期刊文献+

基于视觉显著性检测的图像分类方法 被引量:10

Image classification method based on visual saliency detection
下载PDF
导出
摘要 针对传统的图像分类方法对整个图像不分等级处理以及缺乏高层认知的问题,提出了一种基于显著性检测的图像分类方法。首先,利用视觉注意模型进行显著性检测,得到图像的显著区域;然后,利用Gabor滤波方法和脉冲耦合神经网络模型,分别提取该显著区域的纹理特征和时间签名特征;最后,根据提取的纹理特征和时间签名特征,利用支持向量机实现图像分类。实验结果表明,所提方法在SIMPLIcity图像数据集上平均分类正确率达到94.26%,在Caltech数据集上平均分类正确率为95.43%,从而证明,显著性检测与有效的特征提取对图像分类有重要影响。 To solve the problem that traditional image classification methods deal with the whole image in a non- hierarchical way, an image classification method based on visual saliency detection was proposed. Firstly, the visual attention model was employed to generate the salient region. Secondly, the texture feature and time signature feature of the image were extracted by Gabor filter and pulse coupled neural network, respectively. Finally, the support vector machine was adopted to accomplish image classification according to the features of the salient region. The experimental results show that the image classification precision rates of the proposed method in SIMPLicity and Caltech are 94.26% and 95, 43%, respectively. Obviously, saliency detection and efficient image feature extraction are significant to image classification.
出处 《计算机应用》 CSCD 北大核心 2015年第9期2629-2635,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(U1304607) 河南省高等学校重点项目(15A520080,15A520020) 河南师范大学博士科研启动基金资助项目(qd12138,qd14134)
关键词 视觉注意模型 显著区域 脉冲耦合神经网络 GABOR滤波 图像分类 visual attention model salient region Pulse Coupled Neural Network (PCNN) Gabor filter imageclassification
  • 相关文献

参考文献8

二级参考文献38

  • 1盛骤,谢式千,潘乘毅.概率论与数理统计[M].北京:高等教育出版社,2010. 被引量:35
  • 2Z Wang, Y Ma,F Cheng,et al.Review of pulse-coupled neural networks[J].Image and Vision Computing, 2010, 28(1):5-13.. 被引量:1
  • 3Song Yin-mao,Zhu Xiao-hui,Liu Guo-le.One segmentation algorithm of multi-target image based on improved PCNN[C].IEEE The 2nd Intelligent Systems and Applications (ISA), Wuhan, China, 22-23 May, 2010:510-513.. 被引量:1
  • 4H Berg, R Olsson, T Lindblad, et al.Automatic design of pulse coupled neurons for image segmentation[J].Neurocomputing, 2008,71(10):1980-1993.. 被引量:1
  • 5J C Fu, C C Chen, J W Chai, et al.Image segmentation by EMbased adaptive pulse coupled neural networks in brain magnetic resonance imaging[J].Computerized Medical Imaging and Graphics,2010,34(4):308-320.. 被引量:1
  • 6Yuli Chen, SungKee Park, Yide Ma, et al.A new automatic parameter setting method of a simplified PCNN for image segmentation[J].IEEE Transactions on Neural Networks, 2011, 22(6): 880-891.. 被引量:1
  • 7Masato Yonekawa, Hiroaki Kurokawa.An automatic parameter adjustment method of pulse coupled neural metwork for image segmentation[C].IEEE 19th International Conference on Artificial Neural Networks (ICANN 2009), Limmassol, CYPRUS, SEP 14-17,2009:834-843.. 被引量:1
  • 8Jun Chen, Tadashi Shibata.A NeuronMOSBased VLSI implementation of pulsecoupled neural networks for image feature generation[J].IEEE Ttansactions on Circuits and Systems I: Regular Papers, 2010, 57(6):1143-1151.. 被引量:1
  • 9Zhang D S,Islam M M,Lu G J.A review on automatic image annotation techniques[J].Pattern Recognition,2012,45(1):346-362. 被引量:1
  • 10Chadha A,Mallik S,Johar R.Comparative study and optimization of feature extraction techniques for content based image retrieval[J].International Journal of computer application,2012,52(20):35-42. 被引量:1

共引文献35

同被引文献58

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部