摘要
针对传统的图像分类方法对整个图像不分等级处理以及缺乏高层认知的问题,提出了一种基于显著性检测的图像分类方法。首先,利用视觉注意模型进行显著性检测,得到图像的显著区域;然后,利用Gabor滤波方法和脉冲耦合神经网络模型,分别提取该显著区域的纹理特征和时间签名特征;最后,根据提取的纹理特征和时间签名特征,利用支持向量机实现图像分类。实验结果表明,所提方法在SIMPLIcity图像数据集上平均分类正确率达到94.26%,在Caltech数据集上平均分类正确率为95.43%,从而证明,显著性检测与有效的特征提取对图像分类有重要影响。
To solve the problem that traditional image classification methods deal with the whole image in a non- hierarchical way, an image classification method based on visual saliency detection was proposed. Firstly, the visual attention model was employed to generate the salient region. Secondly, the texture feature and time signature feature of the image were extracted by Gabor filter and pulse coupled neural network, respectively. Finally, the support vector machine was adopted to accomplish image classification according to the features of the salient region. The experimental results show that the image classification precision rates of the proposed method in SIMPLicity and Caltech are 94.26% and 95, 43%, respectively. Obviously, saliency detection and efficient image feature extraction are significant to image classification.
出处
《计算机应用》
CSCD
北大核心
2015年第9期2629-2635,共7页
journal of Computer Applications
基金
国家自然科学基金资助项目(U1304607)
河南省高等学校重点项目(15A520080,15A520020)
河南师范大学博士科研启动基金资助项目(qd12138,qd14134)