期刊文献+

基于稀疏表示的QR码识别 被引量:10

QR code recognition based on sparse representation
下载PDF
导出
摘要 针对QR码图像受污染、破损、遮挡时识别软件无法识别的问题,提出一种基于稀疏表示的QR码识别方法。以40类QR码图像作为研究对象,每类13幅,其中每类随机选取3幅共120幅作为训练样本,余下400幅作为测试样本。所有训练样本组成稀疏表示字典,测试样本为训练样本的稀疏线性组合,表示系数是稀疏的,对每一个测试样本,计算其在字典上的投影,具有最小残差值的类别,即为分类所属类别。最后将提出的方法与QR码识读软件PsQREdit的识别结果做了对比和分析。实验结果表明:提出的方法对于部分受污染、破损、遮挡的图像仍能正确识别,具有很好的鲁棒性,为QR码的识别提供了一种新的有效方案。 With regard to the problem that recognition software does not work when the Quick Response (QR) code image is contaminated, damaged or obscured, a QR code recognition method based on sparse representation was proposed. Forty categories QR code images were used as research subjects and each category has 13 images. Three images were randomly selected from each category and thus a total of 120 images were got as the training sample and the remaining 400 as test sample. Sparse representation dictionary was composed of all training samples. The test samples were a sparse linear combination of the training samples and the coefficients were sparse. The projection of each test sample in the dictionary was calculated, so category with the smallest residual was classification category. Finally, comparison and analysis were done between the recognition results of the proposed method and the QR code recognition software PsQREdit. The experimental results show that, the proposed method is able to correctly identify for partially contaminated, damaged and obscured image, and it has good robustness. It is a new effective means for the recognition of QR code.
出处 《计算机应用》 CSCD 北大核心 2013年第1期179-181,185,共4页 journal of Computer Applications
基金 陕西省教育厅科技立项项目(2010JK847)
关键词 QR码 识别 稀疏表示 压缩感知 鲁棒性 Quick Response (QR) code recognition sparse representation compressed sensing robustness
  • 相关文献

参考文献20

二级参考文献170

共引文献169

同被引文献79

  • 1谷晓琳,黄明,戚海英.基于遗传算法的二维QR码图像识别[J].大连铁道学院学报,2005,26(4):47-51. 被引量:11
  • 2李敏.C/S和B/S模式及混合模式研究[J].西华师范大学学报(自然科学版),2006,27(2):198-201. 被引量:10
  • 3鲁宏伟,魏凯,孔华锋.一种改进的KMP高效模式匹配算法[J].华中科技大学学报(自然科学版),2006,34(10):41-43. 被引量:26
  • 4杨福增,张艳宁,王峥,杨青.基于小波变换的Wiener滤波算法去除苹果图像噪声[J].农业机械学报,2006,37(12):130-133. 被引量:10
  • 5Cand:s E. Compressive Sampling [ C ]//Proceedings of the International Congress of Mathematicians. Madrid: Amer Mathematical Society, 2006: 1433-1452. 被引量:1
  • 6Richard G, Baraniuk. Compressive Sensing[ J]. IEEE Signal Processing Mag:ine, 2007, 24(4) :118-124. 被引量:1
  • 7Wright J, YANG A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2009, 31(2) : 210-227. 被引量:1
  • 8CHEN Y, LIU J, Lv S T. Modulation Classification based on Bispectmm and Sparse Representation in Cognitive Radio [C]//IEEE 13th International Conference on Communica- tion Technology. Piscataway: IEEE Press ,2011:25-28. 被引量:1
  • 9SHEN Y, LIU G H, LIU It. Classification of Power Quali- ty Disturbances based on Random Matrix Transform and Sparse Representation[ C ]//8tb World Congress on Intelli- gent Control and Automation. Pi:ataway: IEEE Press, 2010: 7-9. 被引量:1
  • 10ZHENG C H, ZHANG L, HUANG D S, et al. Metasam- pie-based Sparse Representation for Tumor Classification [ J ]. IEEE- ACM Trans. On Comput Biol Bioinform, 2011, 8(5): 1273-1282. 被引量:1

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部