期刊文献+

Robust Hierarchical Framework for Image Classification via Sparse Representation 被引量:4

Robust Hierarchical Framework for Image Classification via Sparse Representation
原文传递
导出
摘要 The sparse representation-based classification algorithm has been used for human face recognition. But an image database was restricted to human frontal faces with only slight illumination and expression changes. Cropping and normalization of the face needs to be done beforehand. This paper uses a sparse representation-based algorithm for generic image classification with some intra-class variations and background clutter. A hierarchical framework based on the sparse representation is developed which flexibly combines different global and local features. Experiments with the hierarchical framework on 25 object categories selected from the Caltech101 dataset show that exploiting the advantage of local features with the hierarchical framework improves the classification performance and that the framework is robust to image occlusions, background clutter, and viewpoint changes. The sparse representation-based classification algorithm has been used for human face recognition. But an image database was restricted to human frontal faces with only slight illumination and expression changes. Cropping and normalization of the face needs to be done beforehand. This paper uses a sparse representation-based algorithm for generic image classification with some intra-class variations and background clutter. A hierarchical framework based on the sparse representation is developed which flexibly combines different global and local features. Experiments with the hierarchical framework on 25 object categories selected from the Caltech101 dataset show that exploiting the advantage of local features with the hierarchical framework improves the classification performance and that the framework is robust to image occlusions, background clutter, and viewpoint changes.
作者 左圆圆 张钹
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2011年第1期13-21,共9页 清华大学学报(自然科学版(英文版)
基金 Supported by the National Natural Science Foundation of China(No. 90820305) the National Basic Research and Development Program (973) Program of China(No. 2007CB311003)
关键词 image classification keypoint detector keypoint descriptor sparse representation image classification keypoint detector keypoint descriptor sparse representation
  • 相关文献

参考文献23

  • 1J. Zhang,M. Marsza?ek,S. Lazebnik,C. Schmid.Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study[J]. International Journal of Computer Vision . 2007 (2) 被引量:1
  • 2K. Mikolajczyk,T. Tuytelaars,C. Schmid,A. Zisserman,J. Matas,F. Schaffalitzky,T. Kadir,L. Van Gool.A Comparison of Affine Region Detectors[J]. International Journal of Computer Vision . 2005 (1-2) 被引量:1
  • 3David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2) 被引量:1
  • 4Yang J C,Yu K,Gong Y H,et al.Linear spatial pyramid matching using sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recog-nition . 2009 被引量:1
  • 5Gao S H,Tsang W I,Chia L T,et al.Local features are not lonely -Laplacian sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition . 2010 被引量:1
  • 6Zuo Y,Zhang B.General image classifications based on sparse representation. IEEE International Conference on Cognitive Informatics . 2010 被引量:1
  • 7Caltech 101 dataset. http://www.vision.caltech.edu/Im-age_Datasets /Caltech101 . 2010 被引量:1
  • 8Yang J,Jiang Y.Evaluating bag-of-visual-words represen-tations in scene classification. Proc. of the International Workshop on Multimedia Information Retrieval . 2007 被引量:1
  • 9Jing F,,Li M J,Zhang H J,et al.Relevance feedback in region-based image retrieval. IEEE Transactions on Cir-cuits and Systems for Video Technology . 2004 被引量:1
  • 10Sivic J,Zisserman A.Video Google: A text retrieval ap-proach to object matching in videos. IEEE International Conference on Computer Vision . 2003 被引量:1

同被引文献36

  • 1谷晓琳,黄明,戚海英.基于遗传算法的二维QR码图像识别[J].大连铁道学院学报,2005,26(4):47-51. 被引量:11
  • 2WRIGHT J, YANG A Y, GANESH A, et al. Robust tace recogni- tion via sparse representation [ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2009, 31 (2) : 210 - 227. 被引量:1
  • 3ZANG F, ZHANG J S. Discriminative learning by sparse represen- tation for classification [ J]. Neurocomputing, 2011, 74(12/13) : 2176 -2183. 被引量:1
  • 4GUO D M, ZHANG D, ZHANG L. Sparse representation-based classification for breath sample identification [ J]. Sensors and Ac- tuators B: Chemical, 2011, 158(1): 43-53. 被引量:1
  • 5YIN J, L1U Z H, JIN Z, et al. Kernel sparse representation based classification [J]. Neurocomputing, 2012, 77(1): 120-128. 被引量:1
  • 6PINKUS A. Sparse representations and approximation theory [ J]. Journal of Approximation Theory, 2011, 163(3) : 388 -412. 被引量:1
  • 7DONOHO D L. Compressive sensing [ J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289 - 1306. 被引量:1
  • 8HUA G,YANG M S. Introduction to the special section on real word face recognition[J].Pattern Analysis and Machine Intelligence,2011,33(10): 1921-1924. 被引量:1
  • 9WRIGHT J,YANG A,GANESH A. Robust face recognition via sparse representation [J]. Pattern Analysis and Machine Intelligence, 2009,31(2): 210-227. 被引量:1
  • 10HUANG W L,YIN H J.On nonlinear dimensionality reduction for face recognition [J]. Image and Vision Computing,2012,30(4):355-366. 被引量:1

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部