期刊文献+

改进视觉背景提取的运动目标检测算法 被引量:3

Improved visual background extraction for moving target detection algorithm
下载PDF
导出
摘要 针对当前运动目标检测在实际应用中消除鬼影时间较长,对复杂多变的环境适应性不强等问题,提出一种改进视觉背景提取的算法。通过视频的前K帧图像中的奇数帧初始化背景模型和最大欧氏距离点的替换,加快鬼影的消除;将实时视频信息引入参考帧,借助参考帧的缓冲作用实现对背景的逐渐更新;参考帧和背景模型交替作用,充分利用像素点的空间信息和时间信息,获得真实可靠的背景图像。实验结果表明,该方法能够较快去除鬼影,大幅滤除缓慢运动的目标对背景的污染,消除由动态背景产生的误检,提高检测目标的准确率。 For long time consumed when detecting moving target in practical application of eliminating ghost, and weak adapta-bility in the complicated and changeable environment, an improved visual background extraction algorithm was proposed. Through odd-numbered frames initialized background model in the pre-K-frame image and the replacement of the largest Eucli-dean distance point in the beginning of video, ghost elimination was speeded up. Real-time video information was taken into the reference frame, and reference frame buffer action was utilized to realize updating background gradually. The reference frame and the background model were functioned, and the pixels spatial domain information and the pixels time domain information were fully used, which obtained a reliable background image. Experimental results show that the proposed method can effectively get rid of the ghost, and it can filter influences of slow movement target on background, and eliminate the error detection caused by dynamic background, which improves the detection accuracy of target.
作者 吴晗 黄山 WU Han HAUNG Shan(College of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China College of Computer Science, Sichuan University, Chengdu 610065, China)
出处 《计算机工程与设计》 北大核心 2017年第5期1282-1286,共5页 Computer Engineering and Design
关键词 运动目标检测 背景模型 鬼影 参考帧 空间信息 moving target detection background model ghost reference frame spatial information
  • 相关文献

参考文献5

二级参考文献65

  • 1桂本烨,钱徽,朱淼良.一种优化梯度计算的改进HS光流算法[J].中国图象图形学报,2005,10(8):1052-1058. 被引量:9
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 3张磊,史金飞,罗翔.运动目标检测的差分图像法分析研究[J].工业仪表与自动化装置,2007(3):7-11. 被引量:11
  • 4Stauffer C, Grmson W E L.Adaptive background mixture mod- els for real-time tracking[C]//Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition,Fort Co- lins, Colorado,USA.[S.l.] : IEEE Computer Society, 1999,2: 246-252,. 被引量:1
  • 5Pavlidis I, Morellas V, Tsiamyrtzis P, et al.Urban surveillance system: From the laboratory to the commercial world[J].Pro- ceedmgs of the IEEE,2001,89(10) : 1478-1497. 被引量:1
  • 6Power P W, Schoonees J A.Understanding background mixture models for foregrounds segmentation[C]//Proceedings of lmage and Vision Computing, New Zealand, Auckland, 2002: 267-271. 被引量:1
  • 7Zhang Yunchu, Liang Zize, Hou Zengguang, et aLAn adaptive mixture gaussian background model with online background re- construction and adjustable foreground .mergence time for mo- tion segmentation[C]//IEEE International Conference on Industri- al Technology,ICIT 2005,14-17 Dec 2005:23-27. 被引量:1
  • 8Duda R O,Hart P E,Stork D G.Pattcm classification[M].2nd cd. New York:John Wiley & Sons,lnc,2001:521-528. 被引量:1
  • 9SONKAM HLAVACV BOYLER 艾海舟 武勃 译.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2003.. 被引量:23
  • 10Yuan Guo-wu. Research on moving objects detection and tracking methods in intelligent visual surveillance system [ D]. Kunming: Yunnan University ,2012. 被引量:1

共引文献208

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部