期刊文献+

基于ViBe的复杂背景下的运动目标检测 被引量:10

Moving Objects Detection under Complex Background Based on ViBe
下载PDF
导出
摘要 ViBe算法简单、快速,具有较好的前景检测性能,是运动目标检测和背景建模的主要方法之一。但是在动态背景、相机抖动等户外视频中仍存在噪声和干扰等问题,导致对前景运动目标的检测不准确。针对此问题,提出用像素帧差值代替像素值来初始化背景样本模型的方法,并根据背景动态变化自适应更新阈值来分割前景与背景。实验结果表明,改进算法提高了前景检测的准确性,对噪声干扰表现出了良好的鲁棒性。 Vibe algorithm is simple,fast,and has good foreground detection performance. It is one of the main methods of moving object detection background modeling. But it is still hard to detect the foreground for the outdoor video be cause of the complex background, such as camera shake or trembling leaves of the trees which leads to the inaccurate detection of the moving object. We presented a novel algorithm for moving object detection from a video. The improved approach of ViBe follows a new background model which uses the frame differencing instead of pixel value. Since the fixed threshold value of ViBe algorithm cannot reflect the change of background in real time, a method with self-adaptive threshold was proposed. The experimental results show that the improved algorithm can improve the accuracy of fore- ground detection, and it has good robustness against disturbance.
出处 《计算机科学》 CSCD 北大核心 2017年第9期304-307,共4页 Computer Science
基金 湖北省自然科学基金(2014CFB485)资助
关键词 运动目标检测 背景建模 ViBe算法 帧差 自适应阈值 Moving object detection,Background modeling, ViBe algorithm,Frame differencing, Self-adaptive threshold
  • 相关文献

参考文献6

二级参考文献46

  • 1张磊,史金飞,罗翔.运动目标检测的差分图像法分析研究[J].工业仪表与自动化装置,2007(3):7-11. 被引量:11
  • 2王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 3SONKAM HLAVACV BOYLER 艾海舟 武勃 译.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2003.. 被引量:23
  • 4Collins R,Lipton A,Kanade T.Introduction to the special sec- tion on video surveillance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):745-746. 被引量:1
  • 5Haritaoglu I,Harwood D,Davis L S.W4: Real-time surveil-lance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 809-830. 被引量:1
  • 6Tekal EDigital video processing[M].[S.1.]:Prentice Ha11,1995. 被引量:1
  • 7Haritaoglu I, Harwood D, Davis L S.W4: Who? When? Where? What? A real time system for detecting and tracking people[C]// Proceedings of Third IEEE International Conference on Au- tomatic Face and Gesture Recognition,1998:222-227. 被引量:1
  • 8Papenberg N, Bruhn A,Brox T.Highly accurate optic flow computation with theoretically justified warping[J].International Journal of Computer Vision, 2006,67 (2) : 141-158. 被引量:1
  • 9Stauffer C, Eric W, Grimson L.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Anal- ysis and Machine Intelligence,2000,22(8):747-757. 被引量:1
  • 10Barnich O,Van Droogenbroeck M.ViBe:a powerful random technique to estimate the background in video sequences[C]// Proceedings of 2009 IEEE International Conference on Acous- tics, Speech and Signal Processing,2009:945-948. 被引量:1

共引文献84

同被引文献85

引证文献10

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部