期刊文献+

基于自适应混合高斯模型的时空背景建模 被引量:78

Spatiotemporal Background Modeling Based on Adaptive Mixture of Gaussians
下载PDF
导出
摘要 提出了一种基于自适应混合高斯模型的时空背景建模方法,有效地融合了像素在时空域上的分布信息,改善了传统的混合高斯背景建模方法对非平稳场景较为敏感的缺点.首先利用混合高斯模型学习每个像素在时间域上的分布,构造了基于像素的时间域背景模型,在在此基础上,通过非参数密度估计方法统计每个像素邻域内表示背景的高斯成分在空间上的分布,构造了基于像素的空间域背景模型;在决策层融合了基于时空背景模型的背景减除结果.为了提高本文时空背景建模的效率,提出一种新的混合高斯模型高斯成分个数的自适应选择策略,并利用积分图实现了空间域背景模型的快速计算.通过在不同的场景下与多个背景建模方法比较,实验结果验证了本文算法的有效性. The background model of traditional mixture of Gaussians is less robust to non-stationary scenes. This paper presents an adaptive spatiotemporal background model, combining the temporal information of per-pixel and the spatial information in the local region. Based on the temporal distribution model learned by mixture of Gaussians, the spatial background model of per-pixel is utilized to construct the spatial distribution of background in the local region by non-parametric density estimation. The robust detection is achieved by fusing the subtraction results separately based on the temporal and spatial background models. Additionally, to improve the computation efficiency, an adaptive selection strategy of the number of components of mixture of Gaussians model is proposed and integral image method is applied to calculate the spatial background model. Experimental comparisons demonstrate the effectiveness of the proposed method.
出处 《自动化学报》 EI CSCD 北大核心 2009年第4期371-378,共8页 Acta Automatica Sinica
基金 国家自然科学基金重点项目(60634030) 航空科学基金(2007ZC53037) 高等学校博士学科点专项基金(20060699032) 教育部新世纪优秀人才支持计划(NCET-06-0878) 西北工业大学科技创新基金资助~~
关键词 时空背景模型 信息融合 混合高斯模型 非参数密度估计 Spatiotemporal background model, information fusion, mixture of Gaussians, non-parametric densityestimation
  • 相关文献

参考文献16

  • 1Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181 被引量:1
  • 2Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757 被引量:1
  • 3Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5 被引量:1
  • 4Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780 被引量:1
  • 5Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832 被引量:1
  • 6Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271 被引量:1
  • 7Elgammal A, Duraiswami R, Haxwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163 被引量:1
  • 8Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann J M. Topology free hidden Markov models: application to background modeling. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 294-301 被引量:1
  • 9Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261 被引量:1
  • 10Wang Y, Loe K F, Wu J K. A dynamic conditional random field model for foreground and shadow segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 279-289 被引量:1

同被引文献728

引证文献78

二级引证文献386

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部