摘要
提出了一种基于自适应混合高斯模型的时空背景建模方法,有效地融合了像素在时空域上的分布信息,改善了传统的混合高斯背景建模方法对非平稳场景较为敏感的缺点.首先利用混合高斯模型学习每个像素在时间域上的分布,构造了基于像素的时间域背景模型,在在此基础上,通过非参数密度估计方法统计每个像素邻域内表示背景的高斯成分在空间上的分布,构造了基于像素的空间域背景模型;在决策层融合了基于时空背景模型的背景减除结果.为了提高本文时空背景建模的效率,提出一种新的混合高斯模型高斯成分个数的自适应选择策略,并利用积分图实现了空间域背景模型的快速计算.通过在不同的场景下与多个背景建模方法比较,实验结果验证了本文算法的有效性.
The background model of traditional mixture of Gaussians is less robust to non-stationary scenes. This paper presents an adaptive spatiotemporal background model, combining the temporal information of per-pixel and the spatial information in the local region. Based on the temporal distribution model learned by mixture of Gaussians, the spatial background model of per-pixel is utilized to construct the spatial distribution of background in the local region by non-parametric density estimation. The robust detection is achieved by fusing the subtraction results separately based on the temporal and spatial background models. Additionally, to improve the computation efficiency, an adaptive selection strategy of the number of components of mixture of Gaussians model is proposed and integral image method is applied to calculate the spatial background model. Experimental comparisons demonstrate the effectiveness of the proposed method.
出处
《自动化学报》
EI
CSCD
北大核心
2009年第4期371-378,共8页
Acta Automatica Sinica
基金
国家自然科学基金重点项目(60634030)
航空科学基金(2007ZC53037)
高等学校博士学科点专项基金(20060699032)
教育部新世纪优秀人才支持计划(NCET-06-0878)
西北工业大学科技创新基金资助~~
关键词
时空背景模型
信息融合
混合高斯模型
非参数密度估计
Spatiotemporal background model, information fusion, mixture of Gaussians, non-parametric densityestimation