期刊文献+

基于混合结构神经网络的自适应背景模型 被引量:5

Adaptive Background Model Based on Hybrid Structure Neural Network
下载PDF
导出
摘要 本文提出一种基于神经网络的视频中运动目标检测自适应背景模型.对每个像素点(或局部区域)建立一个混合结构的神经网络背景模型,模型由一个4层前馈神经网络组成,输入层接受像素HSV特征,特征层实现特征提取功能,模式层以概率神经网络的方式完成像素属于背景概率的计算,输出层以赢者取胜的方式完成前景背景分类和模式层激活节点选择功能.网络的权值和结构随着视频中运动检测过程动态更新,无需独立的训练视频.网络的自适应性表现在网络的学习速率根据相邻帧运动差异自适应计算得到,且网络中的模式节点个数根据权重的变化动态增加或删除.实验结果表明,本文提出的方法在无需手工设置学习速率的情况下,运动区域检测准确率优于其他几种常见的运动检测背景模型,对背景或灯光的突然变化适应速度很快. This paper proposed a new background model for motion detection in video surveillance based on neural network(NN).A neural network background model was build for every pixel(or a small local region).It is a four-layer feedforward neural network.Input layer accept HSV pixel value,feature layer extract features form HSV,pattern layer work as a background probability calculator.Output layer classifies the pixel into background or foreground,and finds the activated node.Weights and structure of network updated dynamically along with motion detection and no training video needed.Adaptability of background model includes adaptive learning rate calculated form motion difference between adjacent frames,and number of pattern node changes according to weight variation.Experimental results on benchmark videos show that,without any manual setting of learning rate,the proposed algorithm can detection motion more precisely than other familiar background models,and it can also adapts to sudden background or lighting changes more quickly.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第5期1053-1058,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61040038)
关键词 视频监控 运动检测 神经网络(NN) 概率神经网络(PNN) 赢者取胜(WTA) video surveillance motion detection neural network(NN) probabilistic neural network(PNN) winner take all(WTA)
  • 引文网络
  • 相关文献

参考文献15

二级参考文献59

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2Eveland C, Konolige K,and Bolles R. C. Background modeling for segmentation of video-rate stereo sequences[ A ]. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition[ C] : Santa Barbara, CA. June 1998.266-271. 被引量:1
  • 3Saptharishi M, Bhat K, Diehl C, Oliver C, Savvides M, Soto A, Dolan J and Khosla P. Recent advances in distributed collaboralive surveillance[ A ]. SPIE Proceedings on Unattended Ground Sensor Technologies and Applications (AeroSense 2000) [C]:Orlando, USA.April 2000.4040:199 - 208. 被引量:1
  • 4Wildes R, Wixson L.Detecting salient motion using spatiotemporal filters and optical flow. Proc[A]. DARPA Image Understanding Workshop[C]: Monterey, California. Nov 1998. 被引量:1
  • 5Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice of background maintenance [ A ]. The Proceedings of the Seventh IEEE International Conference on Computer Vision[C] : Kerkyra, Greece. Sept 1999.255 - 261. 被引量:1
  • 6Wixson L. Detecting salient motion by accumulating directionally-consistent flow [J]. IEEE transactions on pattem analysis and machine intelligence. Aug 2000,22 (8) : 744 - 780. 被引量:1
  • 7Noronha S, Nevatia R. Detection and modefing of building from multiple aerial images [ J ]. IEEE tansaction on pattern analysis and machine intelligence. 2001,23 ( 5 ) : 501 - 518. 被引量:1
  • 8Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen. Effective moving object segmentation algorithm using background registration technique[J] .IEEE Transaction on Circuits and System for Video Technology. July 2(102,12(7) :577 - 585. 被引量:1
  • 9M Nail Gurcan, Yasemin Yardimci, A Enis Getin. Influence function based Gaussianity tests for detection ofmicro-calcifications in mammogram images[ A]. International Conference on Image Processing 1999[ C] : Kobe, Japan. Oct 1999.3:407 - 411. 被引量:1
  • 10Collins R T, et al. A system for video surveillance and monitoring[ R ]. CMU-RI-TR-00-12. Robotics Institute, Carnegie Mellon University. May 2000. 被引量:1

共引文献202

同被引文献49

  • 1万成凯,袁保宗,苗振江.一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法[J].中国科学(F辑:信息科学),2009,39(4):391-396. 被引量:6
  • 2张焱,沈振康,王平.基于BP神经网络的红外小目标检测[J].系统工程与电子技术,2004,26(12):1901-1904. 被引量:7
  • 3Hu Weiming, Tan Tieniu, Wang Liang, et al. A Survey on Visual Surveillance of Object Motion and Behaviors[J]. IEEE Transactions on Systems, Man, and Cybernetics——Part C: Applications and Reviews, 2004, 34(3): 334-352. 被引量:1
  • 4McHugh J M, Konrad J, Saligrama V, et al. Foreground-adaptive Background Subtraction[J]. IEEE Signal Processing Letters, 2009, 16(5): 390-393. 被引量:1
  • 5Culibrk D, Marques O, Socek D, et al. Neural Network Approach to Background Modeling for Video Object Segmentation[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1614-1627. 被引量:1
  • 6Leykin A, Yang Rang, Hammoud R. Thermal-visible Video Fusion for Moving Target Tracking and Pedestrian Classification[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: [s. n.], 2007. 被引量:1
  • 7Dixon T D, Li J, Noyes J M, et al. Scanpath Assessment of Visible and Infrared Side-by-side and Fused Video Displays[C]//Proc. of the 10th International Conference on Information Fusion. Quebec, Canada: [s. n.], 2007. 被引量:1
  • 8Pangop L N, Chausse F, Chapuis R. Asynchronous Bayesian Algorithm for Object Classification: Application to Pedestrian Detection in Urban Areas[C]//Proc. of the 11th International Conference on Information Fusion. Cologne, Germany: [s. n.], 2008. 被引量:1
  • 9Chen Chengyao, Lin Taiming, Wolf W H. A Visible/Infrared Fusion Algorithm for Distributed Smart Cameras[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(4): 514-525. 被引量:1
  • 10Wu Bo, Nevatia R. Tracking of Multiple, Partially Occluded Humans Based on Static Body Part Detection[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: [s. n.], 2006. 被引量:1

引证文献5

二级引证文献9

;
使用帮助 返回顶部