期刊文献+

改进粒子群优化算法的绝对值方程求解 被引量:1

Absolute Value Equations Solved by Using Based on Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为了提高绝对值方程问题的求解精度,提出改进粒子群优化算法的绝对值方程求解方法.首先在粒子群的飞行过程中,对粒子位置进行评价,然后根据评价结果对粒子位置进行更新操作,保证粒子群向全局最优解搜索,最后应用于绝对值方程求解.结果表明,改进后的方法可以避免求解时易出现的早熟现象和难以获得局部最优解问题,能获得更高精度的绝对值方程解,而且迭代次数较少. In order to improve the accuracy of absolute value equation, a method for solving the absolute value equation based on improved particle swarm optimization algorithm is proposed. Firstly, in the/light process of particle swarm, the position of particle is evaluated,and secondly the particle position is updated according to evaluation results to ensure particle swarm search to the global optimal solution, finally it is applied to absolute value equations. The results show that the improved method can avoid the premature phenomenon and easy to obtaining the local optimal solution, can obtain higher accuracy solution of absolute value equation,and the number of iterations are less.
作者 曾京京
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2017年第1期10-12,16,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 湖北省高等学校教学研究项目(2012458)
关键词 绝对值方程 粒子群优化算法 求解精度 迭代次数 位置更新 absolute value equation particle swarm optimization (PSO) algorithm solution precision number of iterations location update
  • 相关文献

参考文献4

二级参考文献53

  • 1Mangasarian 0 L, Absolute Value Equation Solution via Dual Complementarity[ R/OL]. Madison:University of Wis- consin,2011 [ 2011-09-253. ftp ://ftpl cs. wisc. edu/pub/dmi/tech-reports/11-03, ps. 被引量:1
  • 2Yong Long-quart, Liu San-yang, Zhang She-min, et al. Smoothing Newton method for absolute value equations based on aggregate function [ J ]. International Journal of the Physical Sciences ,2011,6 (23) :5399-5405. 被引量:1
  • 3LI Xing-si. An efficient method for non-differentiable optimization problem [ J ]. Science in China-Series A, 1994, 24(4) :371-377. 被引量:1
  • 4Li Qiong, Li Dong-hui. A Smoothing Newton Method for Nonlinear Complementarity Problems [ J ]. Advanced Model- ing and Optimization ,2011,13 (2) : 141-152. 被引量:1
  • 5Qi Li-qun, Sun Jie. Smoothing functions and smoothing Newton method for complementarity and variational inequali- ty problems[J]. J. Optim. Theory Appl. ,2002,113:121-147. 被引量:1
  • 6Yong Long-quan. Particle swarm optimization for absolute value equations [ J ]. Journal of Computational Information Systems,2010,6(7) :2359-2366. 被引量:1
  • 7Yong Long-quan,Liu San-yang,Zhang She-min,et al. A New Method for Absolute Value Equations Based on Har- mony Search Algorithm [ J ]. ICIC Express Letters, Part B : Applications,2011,2 (6) : 1231-1236. 被引量:1
  • 8Mangasarian 0 L. Knapsack feasibility as an absolute value equation solvable by successive linear programming[ J]. Optim. Lett. ,2009,3(2) :161-170. 被引量:1
  • 9Shota Yamanaka, Fukushima M. A Branch-and-Bound Method for Absolute Value Programs and Its Application to Facility Location Problems [ D/OL ]. Kyoto : Kyoto University, 2011 [ 2011-09-25 ]. http ://www-optima. amp. i. kyo- to-u. ac. jp/result/masterdoc/22yamanaka, pdf. 被引量:1
  • 10Jiri Rohn. Systems of Linear Interval Equations[J]. Linear Algebra and Its Applications, 1989(126) :39-78. 被引量:1

共引文献57

同被引文献14

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部