期刊文献+

An occupation time related potential measure for diffusion processes 被引量:4

An occupation time related potential measure for diffusion processes
原文传递
导出
摘要 In this paper, for homogeneous diffusion processes, the approach of Y. Li and X. Zhou [Statist. Probab. Lett., 2014, 94: 48-55] is adopted to find expressions of potential measures that are discounted by their joint occupation times over semi-infinite intervals (-∞, a) and (a, ∞). The results are expressed in terms of solutions to the differential equations associated with the diffusions generator. Applying these results, we obtain more explicit expressions for Brownian motion with drift, skew Brownian motion, and Brownian motion with two-valued drift, respectively. In this paper, for homogeneous diffusion processes, the approach of Y. Li and X. Zhou [Statist. Probab. Lett., 2014, 94: 48-55] is adopted to find expressions of potential measures that are discounted by their joint occupation times over semi-infinite intervals (-∞, a) and (a, ∞). The results are expressed in terms of solutions to the differential equations associated with the diffusions generator. Applying these results, we obtain more explicit expressions for Brownian motion with drift, skew Brownian motion, and Brownian motion with two-valued drift, respectively.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第3期559-582,共24页 中国高等学校学术文摘·数学(英文)
关键词 Laplace transform occupation time potential measure exit time time-homogeneous diffusion Brownian motion with two-valued drift skew Brownian motion Laplace transform, occupation time, potential measure, exit time,time-homogeneous diffusion, Brownian motion with two-valued drift, skew Brownian motion
  • 相关文献

参考文献2

二级参考文献53

  • 1Borodin A N,Salminen P.Handbook of Brownian Motion-Facts and Formulae.2nd ed.Basel:Birkhauser Verlag,2002. 被引量:1
  • 2Buchholz H,Lichtblau H,Vetzel K.The Confluent Hypergeometrie nction:with Special Emphasis on Its Applications.Berlin:Springer,1969. 被引量:1
  • 3Darling D A,Siegert A J F.The first passage problem for a continuous Markov process.Ann Math Statist,1953,24:624-639. 被引量:1
  • 4Feller W.Diffusion processes in one dimension.Trails Amer Math Soe,1954,77:1-31. 被引量:1
  • 5Gihman I I,Skorohod A V.Stochastic Differential Equations.New York-Heidelberg:Springer-Verlag,1972. 被引量:1
  • 6Ito K,McKean H P.Diffusion Processes and Their Sample Paths.Berlin:Springer-Verlag,1974. 被引量:1
  • 7Landriault D,Renaud J-F,Zhou X.Occupation times of spectrally negative Levy processes with applications.Stochastic Process Appl,2011,121:2629-2641. 被引量:1
  • 8Le Gall J F.One-dimensional stochastic differential equations involving the local times of the unknown process.In:Truman A,Williams D,eds.Stochastic Analysis and Applications:Proceedings of the International Conference held in Swansea,April 11-15,1983.Lecture Notes Math,Vol 1095.Berlin:Springer,1984,51-82. 被引量:1
  • 9Lejay A.On the constructions of the skew Brownian motion.Probab Surv,2006,3:413-466. 被引量:1
  • 10Li B,Zhou X.The joint Laplace transforms for diffusion occupation times.Adv Appl Probab,2013,45:1-19. 被引量:1

共引文献10

同被引文献5

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部