期刊文献+

带两步保费率的复合Poisson风险模型的占位时

On Occupation Times for Compound Poisson Risk Model with Two-Step Premium Rate
下载PDF
导出
摘要 本文考虑了带两步保费率的经典复合Poisson风险模型.使用一种替代方法,找到了两个不相交时间间隔的联合占位时对应Laplace变换的显式表达式.其中,Laplace变换用Levy过程的尺度函数来表示. In this paper,we consider the classical compound Poisson risk model with two-step premium rate.Using an alternative approach,we find the explicit expressions for the Laplace transforms of joint occupation times over disjoint intervals for this model.The Laplace transforms are expressed in terms of scale functions of Levy processes.
作者 张爱丽 刘章 ZHANG Aili;LIU Zhang(School of Statistics and M athematics,Nanjing A udit University,Nanjing,211815,China;School of Computer and Information Engineering,Jiangxi Agricultural University,Nanchang,330045,China)
出处 《应用概率统计》 CSCD 北大核心 2020年第3期261-276,共16页 Chinese Journal of Applied Probability and Statistics
基金 The project was supported by the Science and Technology Planning Project of Jiangxi Province(Grant No.GJJ180201).
关键词 复合POISSON风险模型 联合占位时 两步保费率 尺度函数 compound Poisson risk model joint occupation times two-step premium rate scale functions
  • 相关文献

参考文献1

二级参考文献39

  • 1Alili L, Kyprianou A E. Some remarks on first passage of Lvy processes, the American put and pasting principles. Ann Appl Probab, 2005, 15:2062-2080. 被引量:1
  • 2Asmussen S. Ruin Probabilities. Singapore: World Scientific, 2000. 被引量:1
  • 3Avram F, Kyprianou A E, Pistorius M R. Exit problems for spectrally negative Lvy processes and applications to (Canadized) Russian options. Ann Appl Probab, 2004, 14:215-238. 被引量:1
  • 4Avram F, Palmowski Z, Pistorius M R. On the optimal dividend problem for a spectrally negative Lvy process. Ann Appl Probab, 2007, 17:156-180. 被引量:1
  • 5Bertoin J. Lvy Processes. Cambridge Tracts in Mathematics, Vol 121. 被引量:1
  • 6Cambridge: Cambridge University Press, 1996. 被引量:1
  • 7Bertoin J. Exponential decay and ergodicity of completely asymmetric Lvy processes in a finite interval. Ann Appl Probab, 1997, 7:156 -169. 被引量:1
  • 8Biffis E, Kyprianou A E. A note on scale functions and the time value of ruin for Lvy insurance risk processes. Insurance Math Econom, 2010, 46:85- 91. 被引量:1
  • 9Biffis E, Morales M. On a generalization of the Gerber-Shiu function to path-dependent penalties. Insurance Math Econom, 2010, 46:92-97. 被引量:1
  • 10Bingham N H. Fluctuation theory in continuous time. Adv Appl Probab, 1975, 7: 705-766. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部