摘要
滚动轴承是机械设备里的关键部件,它的工作状态直接影响设备的正常运行和人身安全,对滚动轴承进行故障监测和故障诊断是一件很有必要的事。运用振动加速度传感器监测滚动轴承的振动信号,采用EMD(经验模态分解)方法和共振解调相结合的方法,分析故障信号,从实验结果看出该方法提高了信噪比,有效地获取了故障特征。
Rolling bearing is a key component in the machinery equipment,and its working condition directly affects the normal operation of equipment and personal safety. Therefore, it is necessary to take fault monitoring and diagnosis. Acceleration sensors are applied to monitor vibration signal of rolling bearing. The EMD (Empirical Mode Decomposition) and resonance demodulation are combined to analyze the fault signal. The experimental results show that this method improves the signalto-noise ratio and effectively obtains the fault characteristics.
出处
《承德石油高等专科学校学报》
CAS
2017年第1期45-48,共4页
Journal of Chengde Petroleum College
关键词
滚动轴承
EMD方法
共振解调
rolling bearing
EMD method
resonance demodulation