期刊文献+

基于SVM的酒店客户评论情感分析 被引量:7

Emotion Analysis of Hotel Customer's Reviews Based on SVM
下载PDF
导出
摘要 通过增加情感词典种类提高系统对网络词汇、表情符号进行分词和情感分析的准确性;以某酒店的客户评论为原始数据,提取正负向情感词的数量、否定词、程度副词以及特殊符号数量等文本特征后进行不同的特征组合,通过K重交叉验证和网格搜索算法找到SVM(支持向量机)算法的最优参数组合C和g。采用SVM对不同的特征组合进行训练测试并对每个组合的正确率进行分析,然后找出最适合用户评论情感分析的文本特征及特征组合。结果表明:在每个特征组合获取其最优的C和g参数组合的前提下,选用正负向情感词、否定词、情感分值、程度副词的特征组合测试正确率最高,达到93.4%。 This paper improves the accuracy of word segmentation and emotion analysis of network vocabulary and expressions by increasing the variety of emotion dictionary. On the other hand, customer reviews of a hotel are used as the original data. After extracting the amount of text features, such as positive and negative words, negative words, the degree of adverbs and the amount of special symbols, we make different feature combinations, and hope to find the optimal combination of parameters SVM inclu- ding C and g through the k-fold Cross Validation and grid search algorithm. Training and testing different feature combinations by SVM and analyzing the correct rate of each combination, we find out the most suitable combination of text feature and feature a- nalysis which are used for study of user reviews of emotion. The results show that under the premise of satisfying the optimal com- bination of parameters C and g, the correct rate of the feature combination using positive and negative emotional words, negative words, emotion score and degree adverbs is the highest and reaches 93.4%.
作者 石强强 赵应丁 杨红云 SHI Qiang-qiang ZHAO Ying-ding YANG Hong-yun(School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China School of Software, Jiangxi Agricultural University, Nanchang 330045, China Key Laboratory of Agricultural Information Technology, Colleges and Universities of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China)
出处 《计算机与现代化》 2017年第3期117-121,126,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(61562039 61363041)
关键词 情感分析 支持向量机 K重交叉验证 网格搜索 特征组合 emotion analysis SVM K-fold cross validation grid search feature combination
  • 相关文献

参考文献9

二级参考文献103

  • 1王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. 被引量:1
  • 4Vapnik V N.Statical Leaming Theory [M].New York:John Wiley & Sons lnc,1998. 被引量:1
  • 5Kulkarni A,Jayaraman V K,Kulkarni B D.Support vector classification with parameter tuning assisted by agent-based technique[J].Computers and Chemical Engineering,2004,28(3):311-318. 被引量:1
  • 6Pal M,Jayaraman V K,Kulkarni B D.Support vector machines for classification in remote sensing[J].International Journal of Remote Sensing,2005,26(5):1007-1011. 被引量:1
  • 7冯天谨.神经网络技术[M].青岛:青岛海洋大学出版社,1994.187-189. 被引量:5
  • 8Knerr S,Personnaz L,Dreyfus G.Single-layer learning revisited:a stepwise procedure for building and training a neural network[M].Neurocomputing:Algorithms,Architectures and Applications.Springer-Verlag,1990. 被引量:1
  • 9Peter D.Turney.Thumbs up or thumbs down? Sentiment orientation applied to unsupervised classification of reviews[A].In:Proceedings of ACL 2002[C].2002.417-424. 被引量:1
  • 10Ellen Riloff and Janyce Wiebe.Learning extraction patterns for subjective expressions[A].In:Proceedings of EMNLP 2003[C].2003.105-112. 被引量:1

共引文献970

同被引文献51

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部