摘要
在群体性事件爆发后网络上会充斥着各式各样的言论,网民通过简短的句子反映了对某个事件的态度,常常带着浓烈的个人感情色彩和强烈的主观色彩,通过挖掘和分析包含网民情感的网络群体性事件的舆情信息,可以了解网络舆情的发展动向,从而进行有效的掌握和引导。本文在已有基础情感词典的基础上,构建针对群体性事件的网络用语情感词典、网络表情符号情感词典、否定词词典、领域词典,使用libsvm对微博评论文本分类、计算情感倾向,并对构建词典的有效性进行了分析验证。
Various kinds of opinions and remarks can been seen online once incident involving mass participation occurs.The arguments and statements published by netizens are generally short,but intense personal feelings and strong subjective implications are contained,and their attitudes towards the event are epitomized in the remarks.By excavating and analyzing the public opinion information of network group events containing netizens'emotions,we can understand the development trend of network public opinion,so as to effectively grasp and guide it.Based on the existing basic sentiment dictionaries,this paper constructed a sentiment dictionary for network language,a sentiment dictionary for network emoticons,a negative word dictionary,and a domain thesaurus for incidents involving mass participation.The paper also utilized libsvm to classify microblog comment texts and calculate emotional tendencies,and the validity of the dictionary was analyzed and verified.
作者
吕翔
刘陆民
LV Xiang;LIU Lu-Min(School of Information Engineering,Xinyang Agriculture and Forestry University,XinYang 464000,China)
出处
《信阳农林学院学报》
2019年第2期95-98,103,共5页
Journal of Xinyang Agriculture and Forestry University
基金
河南省教育厅人文社会科学研究项目(2018-ZDJH-266)
关键词
网络舆情
情感词典
情感分析
LIBSVM
Internet public opinion
sentiment dictionary
emotional analysis
libsvm