摘要
Using first-principles calculations,including Grimme D2 method for van der Waals interactions,we investigate the tuning electronic properties of bilayer zirconium disulfides(ZrS_2/ subjected to vertical electric field and normal compressive strain.The band gap of ZrS_2 bilayer can be flexibly tuned by vertical external electric field.Due to the Stark effect,at critical electric fields about 1.4 V/?,semiconducting-metallic transition presents.In addition,our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS_2 bilayer sheet.The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics.
Using first-principles calculations,including Grimme D2 method for van der Waals interactions,we investigate the tuning electronic properties of bilayer zirconium disulfides(ZrS_2/ subjected to vertical electric field and normal compressive strain.The band gap of ZrS_2 bilayer can be flexibly tuned by vertical external electric field.Due to the Stark effect,at critical electric fields about 1.4 V/?,semiconducting-metallic transition presents.In addition,our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS_2 bilayer sheet.The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics.
基金
Project support by the CAS/SAFEA International Partnership Program for Creative Research Teams and the Basic and Frontier Technology Research of Henan(No.142300410244)