期刊文献+

针对离群点影响的多模态过程监控方法 被引量:1

Multimode process monitoring method over outliers
原文传递
导出
摘要 在开展过程监控的离线建模的工作中,当训练数据集含有离群点时,高斯混合模型(Gaussian Mixture Model,GMM)不能准确刻画多模态数据特征。为解决GMM易受离群点影响的问题,本文提出了Lo OP-GMM的过程监控方法。首先,用局部离群概率(Local Outlier Probability,Lo OP)算法在数据预处理阶段检测并剔除训练数据集中的离群点,并用GMM算法建立离线模型,同时根据后验概率将训练数据集进行聚类。其次,考虑到在线样本的离群概率,构造一个新的全局概率指标作为统计量并用于多模态过程故障监控。最后,通过数值仿真和连续搅拌釜反应器(Continuous Stirred Tank Reactor,CSTR)过程验证了本文所提方法的有效性。 In the work of offline modeling for process monitoring, the process data characteristics of multimode are not described accurately by a Gaussian Mixture Model (GMM) when training data set contain outliers. In order to solve the problem of GMM is extremely susceptible to outlier observations, a novel multimode process monitoring approach based on LoOP-GMM algorithm is proposed. Firstly, Local Outlier Probability (LOOP) algorithm is applied to detect and extract outliers from the training data set that contain outliers in data preprocessing step, then the offline model of multimode process is obtained by GMM, meanwhile, training data set are clustered based on the posterior probability. In addition, taking into account the outlier probability of online sample, a new global probability index is established as a monitoring statistic for multimode failure monitoring. Lastly, the efficiency of the proposed method is demonstrated through a numerical example and Continuous Stirred Tank Reactor (CSTR) process.
作者 许圆圆 宋冰 谭帅 侍洪波 Xu Yuanyuan Song Bing Tan Shuai Shi Hongbo(School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, Chin)
机构地区 华东理工大学
出处 《计算机与应用化学》 CAS 2017年第2期128-134,共7页 Computers and Applied Chemistry
基金 国家自然科学基金(61374140) 国家自然科学基金青年基金(61403072)
关键词 过程监控 离群点 高斯混合模型 多模态 全局概率指标 process monitoring outlier Gaussian Mixture Model multimode global probability index
  • 相关文献

参考文献3

二级参考文献49

  • 1何明,冯博琴,马兆丰,傅向华.一种基于高斯混合模型的无监督粗糙聚类方法[J].哈尔滨工业大学学报,2006,38(2):256-259. 被引量:8
  • 2Cinar A, Parulekar S, Undey C, Birol G. Batch Fermentation: Modeling, Monitoring, and Control. New York: CRC Press, 2003. 被引量:1
  • 3Lee J M, Yoo C K, Lee I B. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis. Journal of Biotechnology, 2004, 110(2): 119-136. 被引量:1
  • 4Nomikos P, MacGregor J F. Monitoring batch processes using multi-way principal component analysis. AIChE Journal, 1994, 40(8): 1361-1375. 被引量:1
  • 5Kourti T, Nomikos P, MacGregor J F. Analysis, monitoring and fault diagnosis of batch processes using multi-block and multiway PLS. Journal of Process Control, 1995, 5(4): 277-284. 被引量:1
  • 6Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE Journal, 2008, 54(7): 1811-1829. 被引量:1
  • 7Yu J, Qin S J. Multiway Gaussian mixture model based multiphase batch process monitoring. Industrial and Engineering Chemistry Research, 2009, 48(18): 8585-8594. 被引量:1
  • 8Rothwell S G, Martin E B, Morris A J. Comparison of methods for dealing with uneven length batches. In: Proceedings of the 1998 International Conference on Computer Application in Biotechnology. Osaka, Japan: Elsevier, 1998. 387-392. 被引量:1
  • 9Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396. 被引量:1
  • 10Choi S W, Park J H, Lee I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Computers and Chemical Engineering, 2004, 28(8): 1377-1387. 被引量:1

共引文献16

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部