期刊文献+

改进多种群粒子群算法辨识光伏组件参数 被引量:1

Photovoltaic module parameters identification using an improved multi-group particle swarm optimization algorithm
下载PDF
导出
摘要 针对光伏组件参数辨识问题,通过调整光伏单二极管超越方程重构低计算复杂度的目标函数,以预估计模型参数对搜索空间进行优化.然后,结合多种群粒子群算法与单纯形算法的优点,构造出N-MPSO混合新算法用于光伏组件模型参数的精确稳定辨识.最后,利用多种实际光伏组件测量数据对所提方法进行检验.结果表明:N-MPSO算法相较于传统算法能够更加准确、快速,且能稳定地辨识出任意环境条件下光伏组件的模型参数,对于光伏组件及光伏电站的设计、测试与诊断具有实际意义. Addressing the issue of photovohaic module parameters identification, a new hybrid algorithm based on multi-group particle swarm optimization and simplex method is proposed. Firstly, the transcendental equation of the single diode photovohaic model is modified so as to greatly reduce the computation complexity. Secondly, the search space for the parameters is optimized by pre-estimating the parameters initial value. And then, combining the advantage of muhi-group particle swarm optimization and simplex method, a hybrid N-MPSO algorithm is constructed to quickly obtain the stable and accurate parameters. Finally, the algorithm is validated by several groups of I-V data measured from some typical photovohaic modules. The results show that the proposed N-MPSO algorithm can reach a higher accuracy and lower time complexity compared with some other conventional methods, which is significant to the design, testing and diagnosis of photovoltaic modules and power stations.
作者 吴越 陈志聪 吴丽君 林培杰 程树英 陆培民 WU Yue CHEN Zhicong WU Lijun LIN Peijie CHENG Shuying LU Peimin(Institute of Micro-Nano Devices & Solar Cells, Fuzhou University, Fuzhou, Fujian 350116, China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2017年第1期108-114,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(51508105 61601127) 福建省自然科学基金资助项目(2015J05124) 福建省科技厅高校产学合作资助项目(2016H6012) 福建省科技厅工业引导性重点资助项目(2015H0021) 福建省教育厅产学研资助项目(JA14038) 福建省经信委省级技术创新重点资助项目(830020)
关键词 光伏组件 参数辨识 N-MPSO算法 PV module parameter identification N-MPSO algorithm
  • 相关文献

参考文献9

二级参考文献102

  • 1万祖勇,朱宏平,余岭.基于改进PSO算法的结构损伤检测[J].工程力学,2006,23(A01):73-78. 被引量:10
  • 2韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4余世杰,何慧若.太阳能的光伏利用[M].合肥:合肥工业大学,1991,1-17. 被引量:1
  • 5Ouennoughi Z, Chegaar M. A simpler method for extracting solar cell parameters using the conductance method[J]. Solid-State Electronics, 1999, 43 ( 11 ) : 1985-1988. 被引量:1
  • 6Bashahu M, Habyarimana A. Review of and test of methods for determination of the solar cell series resistance [ J ]. Renewable Energy, 1995, 6(2): 129-138. 被引量:1
  • 7Shannat S K, Pavithra D, Srinivasamurthy N, et al. Determination of solar cell parameters: an analytical approach[J]. Phys D, 1993, 26: 1130-1133. 被引量:1
  • 8Engin Kiran, Demir Inan. An approximation to solar cell equation for determination of solar cell parameters [ J]. Renewable Energy, 1999,17 (2) : 235-241. 被引量:1
  • 9Haouari Merbah M, Belhamel M. Extraction and analysis of solar cell parameters from the illuminated current-voltage curve[J]. Solar Energy Materials & Solar Cells, 2005, 87 (1-4): 225-233. 被引量:1
  • 10Ortiz-Conde A, Sanchez F J G, Muci J. New method to extract the model parameters of solar ceils from the explicit analytic solutions of their illuminated I-V characteristics[J]. Sol Energy Mater Solar Cells, 2006, 90(3) : 352-361. 被引量:1

共引文献532

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部