期刊文献+

基于改进粒子群算法的护理机器人摄像机标定

Camera Calibration for Nursing Robot Using Modified Particle Swarm Algorithm
下载PDF
导出
摘要 在护理机器人的研究中,摄像机标定是护理机器人伺服控制的前提和重要的步骤。建立包含摄像机内参数、外参数及畸变系数的非线性模型,在优化摄像机标定参数的过程中,设计了一种在PSO算法的基础上融合蒙特卡罗算法非线性优化的MPSO(Modified Particle Swarm Optimization Algorithm),在精度、稳定性和全局搜索能力等方面与一般算法有明显提高。对所求的初始参数进行非线性优化,得到最终的摄像机参数精确值。在Matlab环境下进行仿真,实验结果表明与传统标定算法相比,非线性模型下的MPSO算法标定精度较高。根据摄像机标定结果,可实现护理机器人快速精准定位,并准确地进行视觉伺服控制。 Camera calibration is the premise and important step of the nursing robot servo control. In the process of optimization of camera calibration parameters, this paper established a nonlinear model includeing the camera inter- nal parameters, the external parameters and distortion coefficients, and designed a Modified Particle Swarm Optimiza- tion Algorithm (MPSO) for nonlinear optimization. Based on PSO algorithm and monte carlo algorithm, the accura- cy," stability and global search ability are obviously enhanced compared with the traditional calibration algorithm. Nonlinear optimization was carried out to meet the desires of initial parameters, and the final accurate camera parame- ters were obtained. Based on the Matlab simulation, the experimental result shows that calibration precision of the nonlinear model of the MPSO algorithm is better than traditional calibration algorithm. According to the results of camera calibration, servoing control of nursing robot visual is more accurately, which achieves fast and accurate orien- tation.
出处 《计算机仿真》 CSCD 北大核心 2014年第1期421-424,共4页 Computer Simulation
基金 国家国际科技合作项目(2011DFA10440-3)
关键词 摄像机标定 非线性模型 改进粒子群算法 护理机器人 Camera calibration Non-linear model Modified particle swarm optimization algorithm Nursing ro-bot
  • 相关文献

参考文献3

二级参考文献38

  • 1贾洪涛,朱元昌.摄像机图像畸变纠正技术[J].电子测量与仪器学报,2005,19(3):46-49. 被引量:33
  • 2Zhang Zhengyou.Flexible camera calibration by viewing aplane from unknown orientations[J].International Conferenceon Computer Vision(ICCV'99),Corfu Greece,1999:666-673. 被引量:1
  • 3Zhang Z.A flexible new technique for camera calibration[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2000,22(11):1330-1334. 被引量:1
  • 4Weng J Y,Cohen P,Herniou M.Camera calibration withdistortion models and accuracy evaluation[J].IEEETransactions on Pattern Analysis and Machine Intelligence.1992,14(10):965-980. 被引量:1
  • 5Chaumette F. Potential problems of stability and convergence in image-based and position-based visual servoing[M]. The Confluence of Vision and Control[C]. Berlin, Germany: Springer-Verlag,1998.66-78. 被引量:1
  • 6Hashimoto K, Noritsugu T. Potential switching control in visual servo[A]. Proceedings of the IEEE International Conference on Robotics and Auimation[C]. San Francisco, CA, USA:2000.2765-2770. 被引量:1
  • 7Hutchinson S, Hager G, Corke P I. Tutorial on visual servo control [J]. IEEE Transactions on Robotics and Automation,1996,12(5):651-670. 被引量:1
  • 8Malis E, Chaumette F. Multi-cameras visual servoing[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. San Francisco, CA, USA: 2000.3183-3188. 被引量:1
  • 9Dixon W E, Zergeroglu E, Fang Y. Object tracking by a robot manipulator: a robust cooperative visual servoing approach[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Washington, DC, USA: 2002.211-216. 被引量:1
  • 10Malis E, Chaumette F, Boudet S. 2-1/2-d visual servoing[J]. IEEE Transaction on Robotics and Automation,1999,15(2):238-250. 被引量:1

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部