期刊文献+

一种新型的简化群优化粒子滤波算法 被引量:3

A new particle filter algorithm based on simplified swarm optimization
下载PDF
导出
摘要 针对粒子滤波的粒子退化和贫化问题,将新兴的简化群优化(SSO)算法引入到粒子滤波的重采样阶段.SSO算法结构简单,在保留优良粒子的基础上,增加一项粒子随机运动过程,以提供粒子多样性.实验结果表明,新算法不仅有效提高了对非线性系统状态的估计精度,而且具有更高的运算速度. A new particle filter based on the simplified swarm optimization (called SSO-PF) is proposed for solving the degeneracy and impoverishment problem in the particle filter. The proposed algorithm uses the emerging SSO that is simple as the resampling stage of particle filter. A random movement is added to SSO to maintain particles diversity. Experimental results show that the proposed algorithm not only effectively boosts the estimation accuracy of the nonlinear system state, but also has a higher computing speed.
作者 张义群 林培杰 程树英 ZHANG Yiqun LIN Peijie CHENG Shuying(College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, Fujian 350116, China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2017年第1期102-107,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(61574038) 福建省科技厅工业引导性重点基金资助项目(2015H0021) 福建省教育厅省属高校基金资助项目(JK2014003)
关键词 粒子滤波 简化群优化 粒子群优化 重采样 粒子退化 particle filter simplified swarm optimization particle swarm optimization resampling particle degeneracy
  • 相关文献

参考文献9

二级参考文献96

  • 1王欣欣,李金保.关于由邻接矩阵求可达性矩阵的方法[J].吉林化工学院学报,2005,22(4):89-91. 被引量:22
  • 2方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 3叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 4Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian stateestimation [J]. IEEE Proceedings F on Radar and Signal Processing, 1993, 140 (2): 107-113. 被引量:1
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/nongaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. 被引量:1
  • 6Doucte A, de Freitas N, Gordon N. Sequential Monte Carol Methods in Practice[M]. New Work: Springer- Verlag, 2001. 被引量:1
  • 7Khan Z, Balch T, Dellaert F. An MCMC-based particle filter for tracking multiple interacting targets[C]// Proceedings of the 8th European Conference on Computer Vision. Berlin: Springer-Verlag, 2004: 279-290. 被引量:1
  • 8Higuehi T. Genetic algorithm and Monte Carlo filter [J]. Proceedings of the Institute of Statistical Mathematics, 1996, 44(1): 19-30. 被引量:1
  • 9Higuchi T. Monte Carlo filter using the genetic algorithm operators [ J ]. Journal of Statistical Computation and Simulation, 1997, 50(1) : 1-23. 被引量:1
  • 10Park S, Hwang J, Rou K, et al. A new particle filter inspired by biological evolution., genetic filter [J]. International Journal of Applied Science Engineering and Technology, 2007, 4(1): 459-463. 被引量:1

共引文献224

同被引文献30

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部