期刊文献+

智能优化方法与粒子滤波技术融合的分析与展望 被引量:4

Survey and Prospect of the Fusion of Intelligent Computational Approaches and Particle Filtering Technique
下载PDF
导出
摘要 智能优化算法通过模拟自然生态系统机制以解决复杂优化问题,粒子滤波成为解决非线性及非高斯动态系统最优估计问题的研究热点。若将多种优化算法结合使用,设计更好的滤波器参数寻优步骤,将会极大改善现有非线性滤波的估计性能。介绍了几种智能计算方法和粒子滤波方法,在此基础上,对智能优化方法与粒子滤波技术的融合进行了分析和讨论,并加以总结和展望。 With simulating the mechanism of nature ecosystem, the intelligent computational approaches have the superiority to solve the combined optimal problem over traditional methods. Particle filtering is used widely to solve the optimized estimates of non-linear and non-Gaussian dynamic system. If the intelligent computational approaches and the particle filtering are combined together, we believe that the estimate performance of the non-linear filtering will improve greatly. In this paper, we introduce some popular intelligent computational approaches and particle filtering, analyze their advantages and disadvantages, introduce their research progress and applied area. Then the integrated problem of the intelligent computational approaches and the particle filtering are analyzed and discussed. At last, the summary and prospects of the integrated application of the intelligent computational approaches and the particle filtering technique area given.
出处 《海洋测绘》 2009年第2期74-77,共4页 Hydrographic Surveying and Charting
基金 国家自然科学基金(40474007) 国家杰出青年科学基金(40125013)
关键词 遗传算法 模拟退火算法 粒子群算法 蚁群算法 粒子滤波 genetic algorithm simulated annealing algorithm particle swarm optimization algorithm ant colony algorithm particle Filtering
  • 相关文献

参考文献27

二级参考文献105

  • 1闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004,23(1):18-21. 被引量:39
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995.. 被引量:16
  • 4[1]Bar-Shalom Y,Forrmann T E. Tracking and Association Data[M]. Academic Press,1988. 被引量:1
  • 5[2]David A, Jean P. 计算机视觉--一种现代方法 [M].北京:电子工业出版社,2004. 被引量:1
  • 6[3]Anderson B D O,Moore J B.Optimal Filtering[M].Englewood Cliffs,1979. 被引量:1
  • 7[4]Arnaud D,Simon G,Chistophe A.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing 2000,10:197-208. 被引量:1
  • 8[5]Michael I,Andrew B.Condensation-Conditional Density Propagation for Visual Tracking[J].International Journal of Computer Vision,1998,29(1):5-28. 被引量:1
  • 9[9]David R, Andrew W, Andrew B.Learning Dynamics of Complex Motions from Image Swquences[J]. In Proc.Europen Conf compu Vision,1996. 被引量:1
  • 10[10]Liang Wang, Wei-ming Hu, tieniu Tan.Recent Development in Human Motion Analysis[J].Pattern recognition 2003,36(3):585-601. 被引量:1

共引文献685

同被引文献36

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部