期刊文献+

多区域采样目标跟踪算法 被引量:3

Multi-region Sampling Object Tracking Algorithm
下载PDF
导出
摘要 针对传统粒子滤波算法中容易发生的退化现象和粒子贫化问题,提出多区域采样目标跟踪方法。该算法将目标模板用多个重叠子区域划分,每个子区域对应一个采样窗口,根据采样子区域置信度能有效估计出跟踪目标的真实状态,子区域的互补性和阶段唯一性能很好地保证采样粒子有效性和状态空间质量,从而提高目标跟踪的精确度。实验结果表明,本文所提出算法能有效缓解目标跟踪中的粒子退化和贫化问题,提高粒子利用率,并且对目标形变、光照变化和部分遮挡等复杂情况具有较好的跟踪性能。 A particle filter for object tracking based on multi-region sampling is proposed to solve the problems of degeneracy phenomenon and particle impoverishment introduced by traditional particle filter algorithm. The proposed method uses some overlapping sub-regions to divide the target model, and each sub-region corresponds to a sampling windows. The true state of target can be estimated by the confidence of each sub-region. The complementary and stage uniqueness of sub-region can guarantee the validity of particles and the quality of state-space. Thereby, the accuracy of object tracking is improved. Experimental results show that the proposed method relieves effectively the sample degradation and poverty problems, improves the efficiency of particles,and is robust to pose, illumination and partial occlusion in the complex background.
作者 夏瑜 吴小俊
出处 《光电工程》 CAS CSCD 北大核心 2014年第11期1-9,共9页 Opto-Electronic Engineering
基金 教育部科学技术研究重大项目(311024) 国家自然科学基金项目(61373055 61300186 61103128) 江苏省自然科学基金项目资助(BK20140419) 江苏省高校自然科学研究项目资助(14KJB520001) 常熟理工学院科研基金项目(KYZ2013051Z)
关键词 粒子滤波 退化问题 多样性 多区域采样 particle filter degeneracy phenomenon diversity multi-region sampling
  • 相关文献

参考文献13

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2Fredrik G, Fredrik G, Niclas G, et al. Particle filters for positioning, navigation and tracking [J]. IEEE Transactions on Signal Processing(S1053-587X), 2002, 50(2): 425-437. 被引量:1
  • 3Alberto D B, Fabrizio D. Particle filter-based visual tracking with a first order dynamic model and uncertainty adaptation [J]. Computer Vision and Image Understanding(S1077-3142), 2011, 115(6): 771-786. 被引量:1
  • 4夏瑜,吴小俊,王洪元.基于局部特征组合的目标跟踪算法[J].光电工程,2012,39(7):67-74. 被引量:7
  • 5HAN Zhenjun, YE Qixiang, JIAO Jianbin, Combined feature evaluation for adaptive visual object tracking [J]. Computer Vision and Image Understanding(S1077-3142), 2011, 115(1): 69-80. 被引量:1
  • 6郭康德,张明敏,孙超,李扬,汤兴.基于视觉技术的三维指尖跟踪算法[J].计算机研究与发展,2010,47(6):1013-1019. 被引量:20
  • 7Chang I'cheng, Lin Shih-yao. 3D human motion tracking based on a progressive particle filter [J]. Pattern Recognition(S0031-3203), 2010, 43(10): 3621-3635. 被引量:1
  • 8CHU Jinkui, LI Ronghua, LI Qingying, et al. A visual attention model for robot object tracking [J]. International Journal of Automation andComputing(S1476-8186), 2010, 7(2): 39-46. 被引量:1
  • 9Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Ganssian Bayesian state estimation [J]. IEEE Proceedings on Radar and Signal Processing(S0143-7070), 1993, 140(2): 107-113. 被引量:1
  • 10MEI Xue, LING Haibin. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Transations on Pattern Analysis and Machine Intelligence(S0162-8828), 2011, 33(11): 2259-2272. 被引量:1

二级参考文献60

共引文献328

同被引文献21

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部