期刊文献+

高动态范围图像客观质量评价方法 被引量:2

Objective quality assessment method of high dynamic range image
下载PDF
导出
摘要 针对当前高动态范围(HDR)图像质量评价方法未考虑图像色度和结构信息的问题,提出了一种新的HDR图像客观质量评价方法。首先,利用HDR-VDP-2.2中的基于视觉感知的模型得到关于亮度与对比度的视觉保真度特征;然后,将HDR图像转换到YIQ彩色空间,对彩色空间中的Y、I、Q通道分别进行处理,求得色度相似度和结构相关度特征;最后,利用支持向量回归(SVR)的方法对特征进行融合,预测得到高动态范围图像质量的客观评价值。实验结果表明,与HDR-VDP-2.2相比,该方法的Pearson相关系数和Spearman等级相关系数分别提升了23.09%和25.34%;均方根误差(RMSE)降低了38.01%。所提出的方法与主观视觉感知具有更高的一致性。 Aiming at the problem that High Dynamic Range (HDR) image quality evaluation method does not consider the color and structure information of HDR image, a novel objective quality assessment method of HDR image was proposed. Firstly, the feature of visual fidelity about brightness and contrast was obtained based on the visual model of HDR-VDP-2.2. Then, the HDR image was transformed into the YIQ color space, and the color similarity and structural correlation coefficient were gotten by dealing with the Y, I, Q channel, respectively. Finally, Support Vector Regression (SVR) was used to fuse the features, and the objective evaluation value of the high dynamic range image quality could be obtained by predicting the similarity degree and the struetural relevance degree. The experimental results show that compared with HDR-VDP-2.2, the Pearson correlation coefficient and Spearman rank correlation coefficient of the proposed method are increased by 23.09% and 25.34%, respectively; the Root Mean Square Error (RMSE) is reduced by 38.01%. The proposed method has higher consistency with subjective visual perception.
出处 《计算机应用》 CSCD 北大核心 2017年第3期695-698,745,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61271270) 浙江省自然科学基金资助项目(LY15F010005)~~
关键词 高动态范围图像 质量评价 特征 支持向量回归 视觉感知 High Dynamic Range (HDR) image quality assessment feature Support Vector Regression (SVR) visual perception
  • 相关文献

参考文献1

二级参考文献48

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 3VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf. 被引量:1
  • 4Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68. 被引量:1
  • 5Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169. 被引量:1
  • 6Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392. 被引量:1
  • 7Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 被引量:1
  • 8ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000. 被引量:1
  • 9Baroncint V. New tendencies in subjective video quality evaluation[J]. IEICE Transactions on Fundamentals, 2006, 89(11): 2933-2937. 被引量:1
  • 10Hoffmann H, Itagaki T, and Wood D, et al.. A novel method for subjective picture quality assessment and further studies of HDTV formats[J]. IEEE Transctions on Broadcasting, 2008, 54(1): 1-13. 被引量:1

共引文献176

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部