期刊文献+

色彩熵在图像质量评价中的应用 被引量:7

Application of color entropy to image quality assessment
原文传递
导出
摘要 目的由于色彩空间包含了图像的大量信息,而且Lab色彩空间更接近于人眼视觉,因此提出一种改进的无参考图像质量评价算法IQALE(image quality assessment using Lab color space and entropy),通过在SSEQ(spatialspectral entropy-based quality)算法中加入Lab色彩空间a通道和b通道的特征来提高算法精度。方法信息熵是近几年研究较多的图像特征,并且能较好地运用在图像质量评价研究中。该文在色彩空间和灰度空间同时提取信息熵特征,通过支持向量机(SVM)对图像特征和MOS值进行训练和测试。结果在LIVE、TID2008、MICT、CSIQ和IVC这5个常用数据库上的实验结果表明:在算法中加入Lab色彩空间信息可以提高算法精度,并且本文算法IQALE的效果优于目前流行的无参考图像质量评价算法。为了验证算法的可扩展性,该文还在这5个数据库上进行了数据库独立性实验。结论从实验结果来看,本文提出的IQALE算法通过加入色彩熵特征使得算法具有较高且较稳定的精度,数据库独立性实验也体现了算法较好的鲁棒性,对于各种失真类型都具有较好的普适性。 Objective An improved no-reference image quality assessment metric IQALE is proposed in this paper. Color space also includes lots of image information, and Lab color space is closer to human vision system. Therefore, to improve the metric accuracy, this paper adds a channel and b channel of Lab color space into the spatial-spectral entropy-based quality (SSEQ) algorithm. Method Information entropy is an image feature that is studied more in recent years, and can be applied to image quality assessment better. Information entropy is extracted in both color and gray spaces. Then the im- age features and MOS value are trained and tested via support vector machine (SVM). Result The results on LIVE, TID2008, MICT, CSIQ and IVC databases demonstrate that adding the information of Lab color space can improve the met- ric accuracy and IQALE algorithm is better than the recent popular no-reference image quality assessment algorithms. More- over, in order to test the scalability of the proposed metric, the database independence experiment is conducted on the five image databases. Conclusion According to the result, IQALE method has better and more stable accuracy by adding the feature of color entropy. The database independence experiment also shows the better Robustness of the method. Furthermore, IQALE has better universality for every distortion type.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第12期1583-1592,共10页 Journal of Image and Graphics
基金 航天科技创新基金项目(CASC05131418) "十二五"民用航天技术预先研究项目(D040201)~~
关键词 图像质量评价 色彩空间 信息熵 色彩熵 image quality assessment color space information entropy color entropy
  • 相关文献

参考文献20

  • 1Wang Z, Bovik A C. Modem Image Quality Assessment [ M ]. California, USA : Morgan&Claypool, 2006. 被引量:1
  • 2Wang Z, Bovik A. Sheikh H. Image quality assessment: from er- ror visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004, 13 (4) : 600-612. [DOI: 10. 1109/ TIP. 2003.819861 ]. 被引量:1
  • 3Li L, Lin W, Zhu H. Learning structural regularity for evaluating blocking artifacts in JPEG images [ J ]. Signal Processing Letters IEEE, 2014, 21 (8) : 918-922. [DOI: 10. ll09/LSE 2014. 2320743 ]. 被引量:1
  • 4Sang Q, Qi H, Wu X, et al. No-reference image blur index based on singular value eurve[ J]. Journal of Visual Communica- tion & Image Representation, 2014, 25(7) : 1625-1630. [DOI: 10. 1016/j. jveir. 2014. 08. 002]. 被引量:1
  • 5Zhu T, Karam L A no-reference objective image quality metric based on perceptually weighted local noise[ J]. Eurasip Journal on Image & Video Processing, 2014, 2014 (2): 127-128. [DOI : 10. 11 86/1687-5281-2014-5 ]. 被引量:1
  • 6Tang H, Joshi N, Kapoor A. Learning a blind measure of per- ceptual image quality [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011: 305-312. [DOI: 10. ll09/CVPR. 2011. 5995446 ]. 被引量:1
  • 7Li Y, Po L M, Xu X, et al. No-referenee image quality assess- ment with shearlet transform and deep neural networks[ J]. Neu- roeomputing, 2015, 154:94-109. [ DOI: 10. 1016/j. neucom. 2014. 12. 0 15]. 被引量:1
  • 8Zhang Y, Wang C, Mou X. SPCA : a no-reference image quality assessment based on the statistic property of the PCA on nature images[J]. Proc Spie, 2013, 8660(1): 311-316. [DOI: 10. 1117/12. 2008599]. 被引量:1
  • 9金波,李朝锋,吴小俊.结合NSS和小波变换的无参考图像质量评价[J].中国图象图形学报,2012,17(1):33-39. 被引量:22
  • 10贾惠珍,孙权森,王同罕.结合感知特征和自然场景统计的无参考图像质量评价[J].中国图象图形学报,2014,19(6):859-867. 被引量:11

二级参考文献36

  • 1Crete F, Dolmiere T, Ladret P, et al. The blur effect : perception and estimation with a new no-reference perceptual blur metric [ C ]//Human Visual and Electrenic Imaging XII. San Jose, USA: Proceeding of SPIE ,2007:64920I. 被引量:1
  • 2Marziliano P, Dufaux F, Winkler S, et al. A no-reference perceptual blur metric [ C ]// Proceeding of IEEE International Conference on Image Processing. Genimedia SA, Switzerland: IEEE Computer Society,2002:57-60. 被引量:1
  • 3Wang Z,Sheik H R,Bovik A C. No-reference perceptual quality assessment of jpeg compressed images[ C ]//Proceeding of IEEE International Conference on Image Processing. New York, USA: IEEE Computer Society ,2002:447-480. 被引量:1
  • 4Pan F, Lin X, Rahardja S, et al. Using edge direction information for measuring blocking artifacts of images [ J ]. Multidimensional Systems and Signal Processing, 2007,18 (4) : 297 -308. 被引量:1
  • 5Charrier C, Lebrun G, Lezoray O. A machine learning-based color image quality metric [ C ]//Proceedings of Third European Conference on Color in Graphics. Leeds, UK: Imaging And Vision, 2006 : 251-256. 被引量:1
  • 6Babu R V, Perkis A. An hvs-base no-reference perceptual quality assessment of jpeg coded images using neural networks [ C ]// Proceedings of IEEE International Conference on Image Processing. Genoa, Italy: IEEE Computer Society ,2005:433-439. 被引量:1
  • 7Lu W, Zeng K, Tao D C, et al. No-reference image quality assessment in contourlet domain [ J]. Neurocomputing, 2010, 73(4-6) :784-794. 被引量:1
  • 8Moorthy K A, Bovik A C. A two-step framework for constructing blind image quality indices [ J ]. IEEE Signal Processing Letters, 2010,17(5) :513-516. 被引量:1
  • 9Schaaf A, Hateren J H. Modeling the power spectra of natural images : statistics and information [ J ]. Vision Research, 1996, 36(17) :2759-2770. 被引量:1
  • 10Sheikh H R, Wang Z. Live Image Quality Assessment Database [ EB/OL ] (2005) [ 2010-06-14 ]. http :// live. ece. utexas, edu/ research/quality. 被引量:1

共引文献29

同被引文献71

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部