期刊文献+

扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解 被引量:2

Symmetry,reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation
原文传递
导出
摘要 应用经典李群方法得到了扩展的KP-Benjamin-Bona-Mahoney方程的对称和约化方程。通过求解得到的约化方程,结合(G'/G)-展开法和tanh函数展开法以及Riccati辅助方程,求出了该方程的一些精确解,包括行波解、有理函数解、双曲函数解、三角函数解等。最后,利用对称和伴随方程,求出了该方程的守恒律。 By applying the direct symmetry method,the classical Lie symmetry and reduced equation of the extended KP-Benjamin-Bona-Mahoney equation are obtained. At the same time,through the reduced equation,a great many of solutions are derived by solving the reduction equations with( G ' / G)-expansion method and the tanh function expansion method and Riccati auxiliary equation,including travelling wave solutions,the rational function solutions,hyperbolic function solutions,the trigonometric function solutions and so on. Finally,the conservation laws of the equation are obtained by using the symmetry and adjoint equations.
作者 李玉 刘希强
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期77-84,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金与中国工程物理研究院基金课题(NSAF:11076015)
关键词 KP-Benjamin-Bona-Mahoney方程 李点对称 约化方程 精确解 守恒律 KP-Benjamin-Bona-Mahoney equation Lie point symmetry reduction equation exact solution conserva tion laws
  • 相关文献

参考文献3

二级参考文献17

  • 1田贵辰,刘希强.含外力项的广义变系数KdV方程的精确解[J].量子电子学报,2005,22(3):339-343. 被引量:26
  • 2吕大昭.非线性发展方程的丰富的Jacobi椭圆函数解[J].物理学报,2005,54(10):4501-4505. 被引量:22
  • 3Konopelchenko B, Dubrovsky V. Some new integrable nonlinear evolution equations in (2+1) dimension[J]. Phys. Lett. A., 1984,102:15-17. 被引量:1
  • 4Maccari A. A new integrable Davey-Stewartson-type equation[J]. Math. Phys., 1999,40:3971-3977. 被引量:1
  • 5Zhi H Y. Lie point symmetry and some new soliton-like solutions of the Konopelchenko-Dubrovsky equa- tions[J]. Appl. Math. Comput., 2008,203:931-936. 被引量:1
  • 6Lin J, Lou S Y, Wang K L. Multi-soliton solutions of the Konopelehenko-Dubrovsky equation[J]. Chin. Phys. Lett., 2001,18:1173-1175. 被引量:1
  • 7Zhang S. The periodic wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equations[J]. Chaos. Solitons. Fractals., 2006,30:1213-1220. 被引量:1
  • 8Zhang S, Xia T. A generalized F-expansion method and new exact solutions of Konopelchenko- Dubrovsky equations[J]. Appl. Math. Comput., 2006,183:1190-1200. 被引量:1
  • 9Song L, Zhang H. New exact solutions for the Konopelchenko-Dubrovsky equation using an extended Riccati equation rational expansion method and symbolic computation[J]. Appl. Math. Comput., 2007,187:1373- 1388. 被引量:1
  • 10Abdou M A. Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method[J]. Nonlinear. Dyn., 2008,52:1-9. 被引量:1

共引文献36

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部