期刊文献+

(2+1)维Zoomeron方程的新精确解 被引量:1

New Exact Solutions of (2+1)-dimensional Zoomeron Equation
下载PDF
导出
摘要 利用广义代数方法,得到了Zoomeron方程许多精确解,包括双曲函数解、三角周期解,有理函数解、雅可比椭圆函数解等. In this paper,we study the (2+1)-dimensional Zoomeron equation by using the generalized algebraic method. We obtain new exact solutions of the (2+1)-dimensional Zoomeron equation in different forms,including Jacobi elliptic function solutions, hyperbolic function solutions, trigonometric function so- lutions and so on.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期229-232,共4页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金和中国工程物理研究院联合基金(11076015) 聊城大学科研基金(Y0902050)
关键词 (2+1)维Zoomeron方程 广义代数法 齐次平衡法 精确解 (2 +1)-dimensional Zoomeron equation generalized algebraic method homogeneous bal-ance principle exact solution
  • 相关文献

参考文献15

二级参考文献47

共引文献39

同被引文献15

  • 1WAZWAZ A M.The Tanh Method for Travelling Wave Solution of Nonlinear Wave Equations[J].Appl Math Comput,2007,187:1131-1142. 被引量:1
  • 2FAN E G,ZHANG J.Applications of the Jacobi Elliptic Function Method to Special-type Nonlinear Equations[J].Phys Lett A,2002,305:383-392. 被引量:1
  • 3FU Z T,LIU S K,LIU S D,et al.New Jacobi Elliptic Function Expansion and New Periodic Solutions of Nonlinear Wave Equations[J].Phys Lett A,2001,290:72-76. 被引量:1
  • 4WANG M L.Exact Solutions of a Compound KdV-burgers Equation[J].Phys Lett A,1996,213:279-287. 被引量:1
  • 5WADATI M.Wave Propagation in Nonlinear Lattice I[J].Phys Soc Jpn,1975,38:673-680. 被引量:1
  • 6BASSOM A P,CLARKSON P A,HICKS A C.Backlund-transformations and Solution Hierarchies for the 4th Painleve Equation[J].Studies in Applied Mathematics,1995,95(1):1-71. 被引量:1
  • 7ABLOWITZ M J,SEGUR H.Solitons and Inverse Scattering Transform[M].Philadelphia:SIAM,1981. 被引量:1
  • 8LIU J,YANG K.The Extended F-expansion Method and Exact Solutions of Nonlinear PDEs[J].Chaos Soliton Fract,2004,22:111-121. 被引量:1
  • 9HIROTA R.Exact Solution of the KdV Equation for Multiple Collisions of Solitons[J].Phys Rev Lett,1971,27:1192-1194. 被引量:1
  • 10HE J H,WU X H.Exp-function Method for Nonlinear Wave Equation[J].Chaos Soliton Fract,2006,3:700-708. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部