期刊文献+

基于小波变换的风电机组滚动轴承故障KPI计算及故障诊断 被引量:3

Fault KPI Calculation for Rolling Bearing of Wind Turbine Based on Wavelet Transform and Its Fault Diagnosis
下载PDF
导出
摘要 风电机组一般采用滚动轴承支撑结构,滚动轴承不同故障模式对应的振动冲击间隔频率存在差异。为了准确地从振动信号中提取滚动轴承故障征兆,在分析风电机组滚动轴承故障机理、信号特征的基础上,提出了基于小波变换的风电机组滚动轴承故障KPI计算方法,首先对风电机组的振动信号进行小波变换及阈值去噪,并计算振动信号的小波能量谱分布图,然后以小波能量谱分布图的统计参数作为滚动轴承故障诊断的KPI,采用椭圆型判决函数法实现滚动轴承的故障诊断,现场实测信号的诊断结果验证了该方法的有效性。 The rolling bearing bracing structure has been widely used in the wind turbine units.When the rolling bearing is in failure,the spectral composition of the vibration signal is complex and varied under different fault mode.Based on the analysis of the fault mechanism and the vibration signal characteristics of rolling bearing,the fault key performance index(KPI)calculation method for rolling bearing based on wavelet transform was put forward in this paper.Firstly,the wavelet transform and threshold denoising were separately carried out on the vibration signal.And then,twodimensional map of the energy and the frequency section of wavelet transform coefficients were calculated.Finally,the statistical parameters of two-dimensional map were extracted as the fault KPI of the rolling bearing of wind turbine,and the fault diagnosis of rolling bearing was realized by using the elliptic-type decision function method.The validity of the method proposed was verified by the diagnosis results of the field test signals.
出处 《水电能源科学》 北大核心 2017年第2期189-192,共4页 Water Resources and Power
基金 郑州市科技攻关计划项目(X2013G0432) 华北水利水电大学高层次人才科研启动项目(201316)
关键词 风电机组 滚动轴承 频谱 振动 小波变换 故障诊断 wind turbine unit rolling bear frequency spectrum vibration wavelet transform fault diagnosis
  • 相关文献

参考文献7

二级参考文献66

  • 1郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006(2):20-24. 被引量:10
  • 2康海英,栾军英,田燕,郑海起,曹进华.阶次跟踪在齿轮磨损中的应用[J].振动与冲击,2006,25(4):112-113. 被引量:33
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4Ma J, Li C J. Gear defect detection through modelbased wideband demodulation of vibrations [J]. Mechanical System and Signal Process, 1996, 10 (5): 653-665. 被引量:1
  • 5McFadden P D. Detecting fatigue cracks in gear by amplitude and phase demodulation of the meshing vibration[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108: 165- 170. 被引量:1
  • 6Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. R. Soc. Lond. A,1998,454:903-995. 被引量:1
  • 7Huang N E, Shen Z, Long SR. A New view of nonlinear water waves: the Hilbert spectrum[J]. Annu. Rev. Fluid Mech. , 1999,31: 417-457. 被引量:1
  • 8Junsheng Cheng, Dejie Yu, Yu Yang. Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007,21(3) : 1 197--1 211. 被引量:1
  • 9Olhede S, Walden A T. A generalized demodulation approach to time-frequency projections for multicom- ponent signals [J]. Proceedings of the Royal Society A, 2005, 461(2059):2 159--2 179. 被引量:1
  • 10McFadden P D. Examination of a technique for the early detection of failure in gears by signal processing of the time domain average of the meshing vibration [J]. Mechanical Systems and Signal Processing, 1987, 1:173-183. 被引量:1

共引文献239

同被引文献23

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部