期刊文献+

基于信号分解和核极限学习机的风电功率预测 被引量:7

Wind Power Prediction Based on Signal Decomposition and Kernel Extreme Learning Machine
下载PDF
导出
摘要 针对传统短期风功率预测模型在功率变化较大情况下的预测精度不高问题,提出了一种基于信号分解和量子粒子群算法优化核极限学习机的短期风功率预测模型。首先利用经验小波变换将原始风功率序列分解成为若干个模态分量,再利用核极限学习机建立每个模态分量的预测模型,为了提高模型预测精度,采用量子粒子群算法优化核极限学习机参数,最后将每个模态分量预测值相加得到最终的功率预测结果。以实际风电场发电功率为例,并与其他预测模型进行比较,结果表明所提模型具有较高的预测精度。 In order to solve the problem that the prediction accuracy of traditional short⁃term wind power prediction model is not high when the power changes greatly,a short⁃term wind power prediction model based on signal decomposition and quantum particle swarm optimization(QPSO)was proposed.Firstly,the original wind power sequence was decomposed into several modal components by using empirical wavelet transform.Then,the kernel extreme learning machine was used to establish the prediction model of each modal component.In order to improve the prediction accuracy of the model,the parameters of kernel extreme learning machine were optimized by using quantum particle swarm optimization algorithm.Finally,the predicted values of each modal component were added to obtain the final power prediction value.Taking the actual wind farm power generation as an example,and comparing with other prediction models,the results show that the proposed model has higher prediction accuracy.
作者 马宁 董泽 冯斌 MA Ning;DONG Ze;FENG Bin(North China Electric Power Research Institute Co.,Ltd.,Beijing 100045,China;Hebei Technology Innovation Center of Simulation&Optimized Control for Power Generation,North China Electric Power University,Baoding 071003,China;Xi'an Branch of North China Electric Power Research Institute Co.,Ltd.,Xi'an 710065,China)
出处 《山东电力技术》 2022年第1期1-6,共6页 Shandong Electric Power
基金 国家自然科学基金项目(71471060) 河北省自然科学基金项目(E2018502111) 中央高校科研基金项目“电站SCR脱硝系统建模与控制策略研究”(2019QN134)。
关键词 风功率预测 核极限学习机 经验小波变换 量子粒子群算法 wind power prediction kernel extreme learning machine empirical wavelet transform QPSO
  • 相关文献

参考文献10

二级参考文献103

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:146
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3徐乾.模糊综合评判模型预测电站燃煤结渣特性的研究[J].锅炉技术,2006,37(2):55-59. 被引量:16
  • 4Pei Y C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010,25(2): 667-676. 被引量:1
  • 5Rajesh G K, Krithika S. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393. 被引量:1
  • 6Peiyuan C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010,25(2): 667-676. 被引量:1
  • 7Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model[J]. Renewable Energy, 2010, 35(7): 2732-2738. 被引量:1
  • 8Monfared M, Rastegar H, Kojabadi H M. A new strategy for wind speed forecasting using artificial intelligent methods[J]. Renewable Energy, 2009, 34(5): 845-848. 被引量:1
  • 9Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and-non-stationary time series analysis [J]. Proceedings of the Royal Society Soc Land, 1998, 454(1971): 903-995. 被引量:1
  • 10Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. 被引量:1

共引文献317

同被引文献128

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部