期刊文献+

基于小波包变换和极限学习机的滚动轴承故障诊断 被引量:4

Multifault Dignosis for Rolling Bearings Based on Wavelet Packet Transform and Extreme Learning Machine
下载PDF
导出
摘要 采用基于小波包变换(WPT)和极限学习(ELM)的方法对轴承故障进行诊断和分类辨识。该方法首先采用小波包变换对采集到的振动信号进行分解,求得各频带的相对能量,并构建特征向量,接着利用极限学习机进行自动分类识别。经使用实验台实测电机滚动轴承不同状态的信号进行分析,研究结果表明,所建立的自动分类模型可以有效地对轴承的单一故障,以及不同程度故障有很好的辨识能力。 In this paper,a new intelligent fault diagnosis scheme and classification based on wavelet packet transform(WPT)and extreme learning machine(ELM)was proposed.The energy of each band was calculated from decomposed original vibration signals as the feature vector input to classifiers.A novel classifier,ELM,was introduced in this study to diagnose the fault on rolling bearings.Different kinds of motor bearing vibration signals were analyzed.The results show that the bearing's normal state,single fault state and multifault state can be effectively classified.
出处 《太原理工大学学报》 北大核心 2017年第6期959-962,968,共5页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61371062) 山西省自然科学基金资助项目(2014081030)
关键词 轴承 故障诊断 小波包变换 极限学习机 rolling bearings fault diagnosis wavelet packet transform extreme learning machine
  • 相关文献

参考文献2

二级参考文献12

  • 1DuanChendong HeZhengjia JiangHongkai.NEW METHOD FOR WEAK FAULT FEATURE EXTRACTION BASED ON SECOND GENERATION WAVELET TRANSFORM AND ITS APPLICATION[J].Chinese Journal of Mechanical Engineering,2004,17(4):543-547. 被引量:12
  • 2SWELDENS W.The lifting scheme:A construction of second generation wavelets[J].SIAM Journal on Mathematical Analysis,1998,29 (2):511-546. 被引量:1
  • 3SAMANTA B.Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J].Mechanical Systems and Signal Processing,2004,18:625-644. 被引量:1
  • 4YANG B S,HWANG W W,KIM D J,et al.Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines[J].Mechanical Systems and Signal Processing,2005,19:371-390. 被引量:1
  • 5HU Qiao,HE Zhengjia,ZI Yanyang,et al.Intelligent fault diagnosis in power plant using empirical mode decomposition,fuzzy feature extraction and support vector machines[J].Key Engineering Materials,2005,295-296:373-382. 被引量:1
  • 6KIM H C,PANG S,JE H M,et al.Constructing support vector machine ensemble[J].Pattern Recognition,2003,36:2 757-2 767. 被引量:1
  • 7DAUBECHIES I,SWELDENS W.Factoring wavelet transform into lifting steps[J].Journal of Fourier Analysis and Application,1998,4(3):247-269. 被引量:1
  • 8VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 9HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425. 被引量:1
  • 10FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55 (1):119-139. 被引量:1

共引文献43

同被引文献33

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部