期刊文献+

基于一类超球面支持向量机的机械故障诊断研究 被引量:10

Fault diagnosis investigation of machine based on one-class hyperspherical SVM
下载PDF
导出
摘要 针对机械故障诊断中故障类样本不易获取以及样本分布不均的问题,提出了基于一类超球面支持向量机(SVM)的故障诊断方法,该方法只需要对正常类样本进行训练。试验分析了异常类样本缺失对一类超球面支持向量机性能的影响,并提出模型参数优化选择方法,以提高分类模型的推广能力。分析了不同训练结果的分类能力,并对一类超球面支持向量机与一类超平面支持向量机的分类结果进行比较,验证了前者的正确性和有效性。 In order to solve the pratical problem in fault diagnosis of machine, which includes data insufficiency and imbalanced data constitution, the method of fault diagnosis based on one-class hyperspherical SVM is presented in this paper. For one-class hyperspherical SVM, only normal class samples are needed for training purpose. The influence on performance of one-class hyperspherical SVM for lacking of abnormal class samples is analysed, and optimization selection for model parameters is presented to improve generalization performance of classification model. Classification ability of different training result is analysed. Classification result of one-class hyperspherical SVM and hyperplane SVM are compared. The result illustrates effectiveness of one-class hyperspherical SVM.
出处 《振动工程学报》 EI CSCD 北大核心 2008年第6期553-558,共6页 Journal of Vibration Engineering
基金 国防科技重点实验室基金资助项目(51457050103JB3502)
关键词 故障诊断 一类超球面支持向量机 互信息 匀幅 fault diagnosis one-class hyperspherical support vector machine mutual information even amplitude
  • 相关文献

参考文献9

  • 1Scholkopf B, Burges C,Vapnik V. Extracting support data for a given task[A]. Proceedings of First International Conference on Knowledge Discovery and Data mining[C]. Menlo Park, 1995 : 262--267. 被引量:1
  • 2Tax D, Duin R. Support vector domain description[J]. Pattern Recognition Letters, 1999,20:1 191-- 1 199. 被引量:1
  • 3Tax D, Duin R. Support vectors data description[J]. Machine Learning, 2004,54 : 45--66. 被引量:1
  • 4Tax D, Duin R. Data domain description by support vectors[A]. The Proceedings of ESANN99[C]. D. Facto, Brussels, 1999 : 251--256. 被引量:1
  • 5范听炜.支持向量机算法的研究及其应用[D].杭州:浙江大学,2004. 被引量:2
  • 6边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 7Larry M M, Malik M. One-class SVMs for document classification [J]. Journal of Machine Learning Research, 2001,2: 139--154. 被引量:1
  • 8胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 9吴涛..核函数的性质、方法及其在障碍检测中的应用[D].国防科学技术大学,2003:

二级参考文献12

  • 1DuanChendong HeZhengjia JiangHongkai.NEW METHOD FOR WEAK FAULT FEATURE EXTRACTION BASED ON SECOND GENERATION WAVELET TRANSFORM AND ITS APPLICATION[J].Chinese Journal of Mechanical Engineering,2004,17(4):543-547. 被引量:12
  • 2SWELDENS W.The lifting scheme:A construction of second generation wavelets[J].SIAM Journal on Mathematical Analysis,1998,29 (2):511-546. 被引量:1
  • 3SAMANTA B.Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J].Mechanical Systems and Signal Processing,2004,18:625-644. 被引量:1
  • 4YANG B S,HWANG W W,KIM D J,et al.Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines[J].Mechanical Systems and Signal Processing,2005,19:371-390. 被引量:1
  • 5HU Qiao,HE Zhengjia,ZI Yanyang,et al.Intelligent fault diagnosis in power plant using empirical mode decomposition,fuzzy feature extraction and support vector machines[J].Key Engineering Materials,2005,295-296:373-382. 被引量:1
  • 6KIM H C,PANG S,JE H M,et al.Constructing support vector machine ensemble[J].Pattern Recognition,2003,36:2 757-2 767. 被引量:1
  • 7DAUBECHIES I,SWELDENS W.Factoring wavelet transform into lifting steps[J].Journal of Fourier Analysis and Application,1998,4(3):247-269. 被引量:1
  • 8VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 9HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425. 被引量:1
  • 10FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55 (1):119-139. 被引量:1

共引文献44

同被引文献99

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部