期刊文献+

基于自适应神经模糊推理系统(ANFIS)的变压器超高频局部放电模式识别 被引量:4

Partial discharge of UHF pattern recognition in transformers using adaptive neuro-fuzzy inference system (ANFIS)
下载PDF
导出
摘要 对于变压器油中局部放电超高频测量系统所得到的局部放电的特征量,首先,选择优先权较高的6个特征量作为自适应神经模糊推理系统(ANFIS)的输入量,其次,构建6输入单输出的ANFIS,它采用了Takagi-Sugeno模糊系统的if-then规则,利用梯度下降和最优平方估计相结合的混合学习算法进行训练。最后,对于模型的有效性进行了检验,检验结果表明利用ANFIS系统进行局部放电的模式识别是可行的。 Features of partial discharge (PD) in transformers is extracted by Ultra-High-Frequency PD monitoring system. Firstly, according to the priorities of features, six of them are selected as the input variables of the adaptive neuro-fuzzy inference system(ANFIS). Next, the ANFIS model of six inputs and one output is presented. Takagi and Sugeno's fuzzy if-then rules are used. Hybrid learning algorithm combining the gradient method and the least squares estimate (LSE) is adopted to train the ANFIS. Finally, the availability of ANFIS is tested. The results showed that the method based on ANFIS is feasible in PD pattern recognition.
出处 《电工电能新技术》 CSCD 北大核心 2005年第4期30-33,共4页 Advanced Technology of Electrical Engineering and Energy
基金 国家自然科学基金资助项目(50377034)
关键词 自适应神经模糊推理系统(ANFIS) 局部放电 模式识别 变压器 partial discharge pattern recognition ANFIS transformer
  • 相关文献

参考文献10

  • 1A Cavallini, M Conti, A Contin, et al. Advanced PD inference in on-field measurements [J]. IEEE Trans. on Dielectrics and Electrical Insulation, 2003, 10(3): 528-538. 被引量:1
  • 2王国利..油浸式电力变压器局部放电特高频检测技术研究[D].西安交通大学,2003:
  • 3吴晓莉,林哲辉等编著..MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002:272.
  • 4单平..变压器局部放电超高频模式识别系统的研究[D].西安交通大学,2003:
  • 5王国利,郑毅,沈嵩,郝艳捧,李彦明.AGA-BP神经网络用于变压器超高频局部放电模式识别[J].电工电能新技术,2003,22(2):6-9. 被引量:18
  • 6Jyh-Shing Roger Jang. Adaptive-network-based fuzzy inference system [J]. IEEE Trans. on Systems. Man and Cybernetica, 1993, 23(3): 665-684. 被引量:1
  • 7Jyh-Shing Roger Jang. Input selection for ANFIS learning [A]. Proc. 5th IEEE International Conf. on Fuzzy Systems [C]. LA, USA, 1996. 1493-1499. 被引量:1
  • 8Jyh-Shing Roger Jang, Chuen-Tsai Sun. Neuro-fuzzy modeling and control [J]. Proc. of the IEEE, 1995, 83(3): 378-406. 被引量:1
  • 9TMMitchell著 曾华军 张银奎 译.Machine Learning [M].北京:机械工业出版社,2003.76-77. 被引量:1
  • 10Serge Guillaume. Designing fuzzy inference systems from data: An interpretability-oriented review [J]. IEEE Trans. on Fuzzy Systems, 2001, 9(3): 426-442. 被引量:1

二级参考文献12

  • 1Rutgers W R, Fu Y H. UHF PD-Detection in a Power Transformer [A]. 10^th ISH [C]. Montreal, Canada, August 25-29, 1997. 219-222. 被引量:1
  • 2Judd M D, Pryor B M, Kelly S C, et al. Transformer monitoring using the UHF technique [A]. 11^th ISH [C]. London, UK, August 23-27, 1999. 被引量:1
  • 3Krivda A. Automated reognition of partial discharges [J].IEEE Trans. on Dielectrics·and Electrical Insulation, 1995,2(5) : 796-821. 被引量:1
  • 4Gulski E. Digital analysis of partial discharges [J]. IEEE Trans. on Dielectrics and Electrical Insulation, 1995, 2(5) : 822-837. 被引量:1
  • 5Gulski E, Krivda A. Neural networks as a tool for recognition of partial discharges [ J]. IEEE Trans. on Electrical Insulation, 1993, 28(6): 984-1001. 被引量:1
  • 6Xin Yao. Evolving artificial neural networks [J]. Proceedings of the IEEE, 1999, 87(9) : 1423-1447. 被引量:1
  • 7Beyer H-G, Deb K. On self-adaptive features in real-pa-rameter evolutionary algorithms [ J]. IEEE Trans. on Evolutionary Computation, 2001, 5(3): 250-270. 被引量:1
  • 8Wang Pan, Fan Zhun, Fang Shan, et al. Study on a novel hybrid adaptive genetic algorithm embedding conjugate gradient algorithm [ A ]. Proceedings of the 3rd Word Congress on Intelligent Control and Automafion [ C ]. 2000, Vol. 1,630-633. 被引量:1
  • 9王国利,郝艳捧,贾志东,李彦明,张建刚.电力变压器典型局放模型放电脉冲的特性研究[J].高电压技术,2001,27(2):5-8. 被引量:43
  • 10王国利,郝艳捧,李彦明.电力变压器局部放电检测技术的现状和发展[J].电工电能新技术,2001,20(2):52-57. 被引量:131

共引文献17

同被引文献47

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部