期刊文献+

Al_2O_3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性 被引量:2

Ultrahigh Sensitivity and Excellent Selectivity of Al_2O_3-doped ZnO Micro-flowers to Acetone
下载PDF
导出
摘要 利用水热合成技术,成功制备具有孔道的纯ZnO微米花和Al_2O_3掺杂的ZnO(Al_2O_3-ZnO)微米花。通过X射线衍射(XRD)、扫描电镜(SEM)、电子能谱(EDS)对样品的形貌和结构进行表征。利用所得的纯ZnO和Al_2O_3-ZnO样品制备气敏元件,并对其气敏特性进行研究。结果表明:在工作温度为260℃时,基于Al_2O_3-ZnO的气敏元件对100×10^(-6)的丙酮气体的灵敏度约为82.8,约为同条件下基于纯ZnO的气敏元件对丙酮气体灵敏度(18.0)的4.6倍,其响应时间和恢复时间分别为3s和8s,是同条件下干扰气体中灵敏度最高的乙醇气体的灵敏度(26.2)的3.16倍,该元件具有优异的选择性,能成功区分具有相似性质的丙酮和乙醇。此外,Al_2O_3-ZnO器件可检测到0.25×10-6的丙酮气体,其灵敏度约为3.1。 Pore spaced pure ZnO and Al_2O_3-doped ZnO(Al_2O_3-ZnO)micro-flowers were successfully synthesized by hydrothermal method.The microstructure,morphology and components were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy-dispersive X-ray spectrometry(EDS),respectively.Gas sensors were made to investigate the gas sensing properties.The results reveal that the sensor based on Al_2O_3-ZnO shows a high sensitivity to acetone.The sensitivity is 82.8to 100×10-6acetone gas at 260℃,which is about 4.6times larger than that of pure ZnO(18.0)at similar conditions.The response time and recovery time are about 3sand 8s,respectively.Al_2O_3-ZnO also shows an excellent selectivity.Its sensitivity to acetone is 3.16 times higher than that to ethanol,which has the highest sensitivity among interfering gases under the same conditions.Thus,Al_2O_3-ZnO sensors can successfully distinguish acetone and ethanol with similar properties.In addition,the lowest detection to acetone is about 0.25×10-6 with theresponse is about 3.1.
出处 《材料工程》 EI CAS CSCD 北大核心 2017年第2期12-16,共5页 Journal of Materials Engineering
基金 吉林省科技厅重点科技攻关项目资助(20140204027GX) 青年科技创新基金资助项目(450060497053)
关键词 水热法 丙酮 Al2O3-ZnO微米花 气体传感器 hydrothermal method acetone Al2O3-ZnO micro-flower gas sensor
  • 相关文献

参考文献1

二级参考文献28

  • 1Musid S, V~rtes A, Simmons G W, Czaklo-nangy I and Leiodheioser H 1982 J. Coll. In,err. Sci. 85 256. 被引量:1
  • 2Gotic M, Popovic S, Ljubesic N and Musid S 1994 J. Mater. Sci. 29 2474. 被引量:1
  • 3Wang C, Fu X Q, Xue X Y, Wang Y G and Wang T H 2007 Nanotechnology 18 145506. 被引量:1
  • 4Gao T and Wang T H 2005 Appl. Phys. A 80 1451. 被引量:1
  • 5Kiss G, Pinter Z, Perczel I V, Sassi Z and Reti F 2001 Thin Solid Films 391 216. 被引量:1
  • 6Yang Y R, Yan X H, Guo Z H and Deng Y X 2008 Chin. Phys. B 17 3433. 被引量:1
  • 7Ma W G, Wang H D, Zhang X and Takahashi Koji 2009 Chin. Phys. B 18 2035. 被引量:1
  • 8Liu C M, Fang L M and Zu X T 2009 Acta Phys. Sin. 58 936 (in Chinese). 被引量:1
  • 9Huang J Z, Li S S and Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese). 被引量:1
  • 10Batzill M and Diebold U 2005 Prog. Surf. Sci. 79 47. 被引量:1

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部