期刊文献+

Co掺杂ZnO纳米结构的合成及其气敏特性 被引量:4

Synthesis and Gas-Sensing Property of Co-Doped ZnO Nanostructures
下载PDF
导出
摘要 采用水热法合成了不同质量分数Co掺杂ZnO纳米结构,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对其表面形貌、元素种类和物相结构进行了分析和表征。制备出了基于不同量Co掺杂的ZnO气体传感器,并研究了Co掺杂ZnO气体传感器对甲烷的气敏特性。实验结果表明,在最佳工作温度(140℃)下,质量分数2%Co掺杂ZnO气体传感器对体积分数为10-4甲烷气体的最高灵敏度可达3.55,最低检测极限为5×10-8,并且响应时间和恢复时间分别为19和27 s。这表明Co掺杂ZnO气体传感器在实现对低浓度甲烷气敏检测方面具有较好的潜在应用价值。 The Co-doped ZnO nanostructures with different mass fractions of Co were synthesized using the hydrothermal method.The morphologies,elements and phase of the as-prepared Codoped ZnO nanostructures were characterized by the scanning electron microscopy(SEM),energy dispersive spectrometer(EDS)and X-ray diffraction(XRD).The Co-doped ZnO gas sensors with different mass fractions of Co were fabricated,and the gas-sensing performances of the fabricated gas sensors were also studied for the methane gas.The experiment results show that at optimal working temperature(140 ℃),the highest sensitivity of the Co-doped ZnO gas sensor with the Co doping mass fraction of 2% for the methane gas with the 10-4 volume fraction can reach to 3.55,and the minimum detection limit is 5×10-8.Moreover,the corresponding response time and recovery time are 19 s and 27 s,respectively.The experimental results demonstrate that Co-doped ZnO gas sensors have greatly potential for the application of the low concentration methane detection.
出处 《微纳电子技术》 北大核心 2016年第3期188-194,共7页 Micronanoelectronic Technology
基金 山西省自然科学基金资助项目(2013011019-5 2012021030-1) 微细加工光学技术国家重点实验室基金资助项目(KFS4) 山西省科技重大专项资助项目(20121101004) 山西省高等学校特色重点学科建设项目(晋教财[2012]45号)
关键词 水热法 Co掺杂ZnO 甲烷气体 传感器 气敏特性 灵敏度 hydrothermal method Co-doped ZnO methane gas sensor gas-sensing property sensitivity
  • 相关文献

参考文献26

  • 1KIRSCHBAUM M U F,SAGGAR S,TATE K R,et al.Quantifying the climate-change consequences of shifting land use between forest and agriculture[J].Science of the Total Environment,2013,465(6):314-324. 被引量:1
  • 2AL-HASSANI A A,ABBAS H F,DAUD W M A W.Hydrogen production via decomposition of methane over activated carbons as catalysts:full factorial design[J].International Joural of Hydrogen Energy,2014,39(13):7004-7014. 被引量:1
  • 3SHAN J,HUANG W,NGUYEN L,et al.Conversion of methane to methanol with a bent mono(μ-oxo)dinickel anchored on the internal surfaces of micropores[J].Langmuir,2014,30(28):8558-8569. 被引量:1
  • 4位子涵,孙永娇,胡杰.ZnO纳米线的制备及其气敏特性[J].微纳电子技术,2015,52(11):701-706. 被引量:2
  • 5VUONG N M,HIEU N M,HIEU H N,et al.Ni2O3-decorated SnO2particulate films for methane gas sensors[J].Sensors and Actuators:B,2014,192(3):327-333. 被引量:1
  • 6胡杰,邓霄,桑胜波,李朋伟,李刚,张文栋.微流控技术制备ZnO纳米线阵列及其气敏特性[J].物理学报,2014,63(20):281-287. 被引量:6
  • 7HAO S X,WEN J,YU X P,et al.Effect of the surface oxygen groups on methane adsorption on coals[J].Applied Surface Science,2013,264:433-442. 被引量:1
  • 8EUGSTER W,KLING G W.Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies[J].Atmospheric Measurement Techniques,2012,5(8):1925-1934. 被引量:1
  • 9孙永娇,高翻琴,赵振廷,张文栋,胡杰.基于微接触印刷的ZnO紫外传感器特性研究[J].传感器与微系统,2014,33(2):50-53. 被引量:1
  • 10LI L,NIU S F,QU Y,et al.One-pot synthesis of uniform mesoporous rhodium oxide/alumina hybrid as high sensitivity and low power consumption methane catalytic combustion micro-sensor[J].Journal of Materials Chemistry,2012,22(18):9263-9267. 被引量:1

二级参考文献54

  • 1Cha S, Jang J, Choi Y, Amaratunga G, Ho G, Welland M, Hasko D, Kang D J, Kim J 2006 Appl. Phys. Lett. 89 263102. 被引量:1
  • 2Wang J, Sun X, Huang H, Lee Y, Tan O, Yu M, Lo G, Kwong D 2007 Appl. Phys. A 88 611. 被引量:1
  • 3Musarrat J, Muhammad A I, R V Kumar, Mansoor A, Muhammad T J 2014 Chin. Phys. B 23 018504. 被引量:1
  • 4Lim J H, Kang C K, Kim K K, Park I K, Hwang D K, Park S J 2006 Adv. Mater. 18 2720. 被引量:1
  • 5Jiang W, Gao H, Xu L L, Ma J N, Zhang E, Wei P, Lin J Q 2011 Chin. Phys. B 20 037307. 被引量:1
  • 6Yu X, Hu Z Y, Huang Z H, Yu X M, Zhang J J, Zhao G S, Zhao Y 2013 Chin. Phys. B 22 118801. 被引量:1
  • 7Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106. 被引量:1
  • 8Park W I, Kim D, Jung S W, Yi G C 2002 Appl. Phys. Lett. 80 4232. 被引量:1
  • 9Qiu J, Guo M, Feng Y, Wang X 2011 Electrochim. Acta 56 5776. 被引量:1
  • 10Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P 2005 Nano Lett. 5 1231. 被引量:1

共引文献6

同被引文献37

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部