摘要
大学英语形成性分层评价模式的构建旨在解决传统评价中"证据片面性"与"反馈信息抽象"等难题。文章以多元智能和大数据理念为支撑,通过问卷调查、学生电子档案和学习效果测试等研究工具,对大学英语两个班级(70人)进行了一学期的实验研究。结果表明,大数据理念下的大学英语形成性分层评价模式有助于改善学生的非智力因素和提高学生的英语学习成绩。
The construction of college English formative evaluation model is to resolve the problems of unilateral evidence and the abstract feedback information in the process of assessment. Supported by the Multiple-intelligences theory and the concept of big data,through the questionnaire survey,students' electronic files and lear-ning tests,two classes(70 students) were studied for one semester. The experimental results show that the evaluation model is helpful to improve the students' no-intelligence and their English learning achievement.
出处
《安徽科技学院学报》
2016年第6期103-107,共5页
Journal of Anhui Science and Technology University
基金
安徽科技学院教研项目(X2016043)
关键词
大数据
大学英语
形成性分层评价模式
Big data
College English
Formative stratified-evaluation model