期刊文献+

复变量移动最小二乘近似误差分析

Error Analysis for the Complex Variable Moving Least Square(CVMLS)Approximation
下载PDF
导出
摘要 复变量移动最小二乘近似是形成无网格法逼近函数的重要方法之一.首先介绍了复变量移动最小二乘近似,接着在权函数及节点分布满足一定假设的条件下,详细讨论了复变量移动最小二乘近似逼近函数及其偏导数的误差估计,最后给出了数值算例. The complex variable moving least square(CVMLS)approximation is one of the most important methods to construct an approximation function with the meshless method.First,CVMLS is briefly introduced in this article.Then,the error estimates for the CVMLS approximation and its partial derivatives are discussed in detail under the condition that the weight function and the node distribution satisfy certain assumptions.Finally,a numerical example is given to confirm the theoretical analysis.
作者 孙新志 SUN Xin-zhi(School of Mathematical Science, Chongqing Normal University, Chongqing 401331, China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期66-72,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金面上项目(11471063)
关键词 复变量移动最小二乘近似 无网格方法 误差分析 complex variable moving least square approximation meshless method error analysis
  • 相关文献

参考文献5

二级参考文献16

  • 1REN HongPing 1 , CHENG YuMin 2 & ZHANG Wu 1 1 School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China,2 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China.An interpolating boundary element-free method (IBEFM) for elasticity problems[J].Science China(Physics,Mechanics & Astronomy),2010,53(4):758-766. 被引量:5
  • 2Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996,139(1): 3~47. 被引量:1
  • 3LI X L, ZHU J L. The Method of Fundamental Solutions for Nonlinear Elliptic Problems [J].Engineering Analysis withBoundary Elements, 2009- 33(3) : 322 - 329. 被引量:1
  • 4LI X L, ZHU J L. A Galerkin Boundary Node Method for Biharmonic Problems [J]. Engineering Analysis with BoundaryElements, 200f, 33(6) : 858 - 865. 被引量:1
  • 5HON Y C , CHEN W. Boundary Knot Method for 2D and 3D Helmholtz and Convection-diffusion Problems under ComplicatedGeometry [J]. International Journal for Numerical Methods in Engineering, 2003, 56(13) : 1931 -1948. 被引量:1
  • 6CHEN W , ZHANG J Y, FU Z J. Singular Boundary Method for Modified Helmholtz Equations[J].Engineering Analysiswith Boundary Elements, 2014- 44C11)1 1 112 -119. 被引量:1
  • 7GU Y , CHEN W , FU Z J , al. The Singular Boundary M ethod: Mathematical Background and Application in OrthotropicElastic Problems Engineering Analysis with Boundary Elements, 2014, 44(11) : 152 -160. 被引量:1
  • 8FU Z J , CHEN W , GU Y. Burton-Miller-type Singular Boundary Method for Acoustic Radiation and Scattering [J].Journal of Sound and Vibration, 2014, 333(16) : 3776-3793. 被引量:1
  • 9YANG C , LI X L. Meshless Singular Boundary Methods for Biharmonic Problems [J ]. Engineering Analysis withBoundary Elements, 2015 , 56 : 39 -48. 被引量:1
  • 10GU Y , CHEN W , ZHANG C Z. Singular Boundary Method for Solving Plane Strain Elastostatic Problems [J]. InternationalJournal of Solids and Structures, 2011, 48(48) : 2549 - 2556. 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部