摘要
复变量移动最小二乘近似是形成无网格法逼近函数的重要方法之一.首先介绍了复变量移动最小二乘近似,接着在权函数及节点分布满足一定假设的条件下,详细讨论了复变量移动最小二乘近似逼近函数及其偏导数的误差估计,最后给出了数值算例.
The complex variable moving least square(CVMLS)approximation is one of the most important methods to construct an approximation function with the meshless method.First,CVMLS is briefly introduced in this article.Then,the error estimates for the CVMLS approximation and its partial derivatives are discussed in detail under the condition that the weight function and the node distribution satisfy certain assumptions.Finally,a numerical example is given to confirm the theoretical analysis.
作者
孙新志
SUN Xin-zhi(School of Mathematical Science, Chongqing Normal University, Chongqing 401331, China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第2期66-72,共7页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金面上项目(11471063)
关键词
复变量移动最小二乘近似
无网格方法
误差分析
complex variable moving least square approximation
meshless method
error analysis