期刊文献+

基于二次移动单元的边界点法解弹性力学问题

Boundary Point Method Based on Quadratic Moving Elements for Elasticity
下载PDF
导出
摘要 边界点法是一种结合基本解法和边界元法二者优点的新的边界型无网格数值方法.将边界点法推广到弹性力学问题的数值求解中,在边界点法原有的常数移动单元基础上,引入了二次移动单元,解决了后处理过程中由于近奇异性而产生的边界附近应力的计算精度问题以及薄壁构件的分析问题.用改进的边界点法对弹性力学平面问题的典型算例进行了分析,结果表明数值解与精确解吻合良好. The boundary point method(BPM) is a newly developed boundary-type meshless method with favorable features of both the method of fundamental solution(MFS) and the boundary element method(BEM).The present paper extends the BPM to the numerical analysis of linear elasticity.In order to improve accuracy of stresses near boundaries due to the near singularity in post-processing and in the analysis of thin-wall structures,quadratic moving elements are introduced into BPM in addition to the original constant moving elements.Numerical tests are carried out with benchmark examples in the two-dimensional elasticity.Good agreement is observed between the numerical results and the rigorous solutions.
作者 马杭 周鹃
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期581-585,共5页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10772106)
关键词 边界点法 二次移动单元 基本解 单点计算 弹性力学 boundary point method(BPM) quadratic moving element fundamental solution one-point computing elasticity
  • 相关文献

参考文献16

  • 1CHATI M K, MUKHERJEE S, PAULINO G H. The meshless hypersingular boundary node method for three- dimensional potential theory and linear elasticity problems [J]. Engineering Analysis with Boundary Elements, 2001, 25:639-653. 被引量:1
  • 2ZHANG J M, TANAKA M, MATSUMOTO T. Meshless analysis of potential problems in three dimensions with the hybrid boundary node method [ J ]. International Journal for Numerical Methods in Engineering, 2004, 59 : 1147-1160. 被引量:1
  • 3程玉民,彭妙娟,李九红.复变量移动最小二乘法及其应用[J].力学学报,2005,37(6):719-723. 被引量:41
  • 4LIU G R, GUY T. A point interpolation method for two- dimensional solid [ J ]. International Journal for Numerical Methods in Engineering, 2001, 50:937-951. 被引量:1
  • 5LIU G R, GU Y T, WANG Y Y. A meshfree radial point interpolation method ( RPIM ) for three-dimensional solids [ J]. Computational Mechanics, 2005, 36:421- 430. 被引量:1
  • 6JIN W G. Trefftz method and its application in engineering [ D]. Hong Kong: University of Hong Kong, 1991. 被引量:1
  • 7KITA E, KAMIYA N, IKEDA Y. An application of Trefftz method to the sensitivity analysis of two-dimensional potential problem [ J ]. International Journal for Numerical Methods in Engineering, 1995, 38:2209- 2224. 被引量:1
  • 8CHEN W, HON Y C. Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmhohz and convection-diffusion problems [ J]. Computer Methods in Applied Mechanics & Engineering, 2003, 192:1859- 1875. 被引量:1
  • 9BERGER J R, KARAGEORGHIS A. The method of fundamental solutions for heat conduction in layered materials [ J ]. International Journal for Numerical Methods in Engineering, 1999, 45:1681-1694. 被引量:1
  • 10CHEN J T, CHEN I L, LEE Y T. Eigensolutions of multiply connected membranes using the method of fundamental solutions [ J ]. Engineering Analysis with Boundary Elements, 2005, 29 : 166-174. 被引量:1

二级参考文献9

  • 1王有成,李洪求,陈海波,吴约.奇性校正特解场法计算任意点应力和位移[J].力学学报,1994,26(2):222-232. 被引量:9
  • 2Tanaka M, Sladek V, Sladek J. Regularization techniques applied to boundary element methods[J].Appl Mech Rev, 1994,47(10) 7457-499. 被引量:1
  • 3Guiggiani M, Gigante A. A general algorithm for multidimensional Cauchy principal value integral in the BEM[J]. J of Appl Mech, 1990,57(4): 906-915. 被引量:1
  • 4Guiggiani M, Krishnasamy G, Rudolphi T J, Rizzo F T. A general algorithm for the numerical solution of hypersingular BEM[J]. J of Appl Mech, 1992,59(3):604-614. 被引量:1
  • 5Liu Yijun. Analysis of shell-like structures by the boundary element method based on 3-D elasticity:formulation and verification [J]. Int J Numer Methods Eng, 1998,41: 541-558. 被引量:1
  • 6Luo J F, Liu Y J, Berger E J. Interracial stress analysis for multi-coating systems using an advanced boundary element method [ J]. Computational Mechanics, 2000,24 : 448-455. 被引量:1
  • 7Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996,139(1): 3~47. 被引量:1
  • 8牛忠荣,王秀喜,周焕林.边界元法中计算几乎奇异积分的一种无奇异算法[J].应用力学学报,2001,18(4):1-8. 被引量:8
  • 9程玉民,陈美娟.弹性力学的一种边界无单元法[J].力学学报,2003,35(2):181-186. 被引量:65

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部