摘要
在重构核粒子法的基础上,提出了复变量重构核粒子法.复变量重构核粒子法的优点是采用一维基函数建立二维问题的修正函数.然后,将复变量重构核粒子法应用于弹性力学,提出了弹性力学的复变量重构核粒子法,并推导了相关公式.与传统的重构核粒子法相比,复变量重构核粒子法具有计算量小、效率高的优点.最后给出了数值算例证明了该方法的有效性.
The reproducing kernel particle method with complex variables is developed in this paper. The advantages of the developed method is that the correction function of a 2-D problem is formed with 1-D basis function. Then, we apply the method to two-dimensional elasticity, and the application to two-dimensional elasticity is presented, and the corresponding formulae are obtained. Compared with the conventional reproducing kernel particle method, the reproducing kernel particle with complex variables developed in this paper has greater precision and computational efficiency. Some examples given in this paper demonstrated the efficiency of the present method.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2008年第1期1-10,共10页
Acta Physica Sinica
基金
国家自然科学基金(批准号:10571118)
上海市重点学科建设项目(批准号:Y0103)资助的课题~~
关键词
重构核粒子法
复变量重构核粒子法
弹性力学
无网格方法
reproducing kernel particle method, reproducing kernel particle method with complex variables, elasticity, meshlessmethod