期刊文献+

基于移动数据的异常区域时序分析 被引量:3

Temporal analysis of anomalous region based on mobile data
下载PDF
导出
摘要 移动数据描述了大量的关于移动对象活动位置和时间变化的序列,反映出城市动态规划的语义知识。发现移动对象活动的异常区域,是发现移动对象时序变化的关键分析前提。因此,针对移动对象的活动轨迹分别从时间和空间的角度进行了研究,首先,从空间区域语义知识的角度分析,利用网格对移动对象的活动区域进行划分,并结合核函数和Top-k排序方法发现异常区域;接着,从时间角度分析,采用基于二进制序列的方法,发现移动对象活动周期;最后,在真实数据集上,验证了该方法的可行性和有效性。 Mobile data shows a large number of the changing sequence of location and time about the moving objects, reflec- ting semantic knowledge about the city dynamic planning. The discovery of anomalous regions visited by moving objects was a critical premise for the discovery of temporal changes about moving objects. Thus, this paper analyzed respectively the move- ment trajectories of moving objects from the temporal and the spatial. Firstly, from the perspective of spatial regional semantic knowledge, the grid divided the moving objects' entire activity space and then to find the anomalous regions by using the kernel function and Top-k sorting method. Secondly, from the perspective of the temporal, the paper proposed a method based on binary sequence to find activity periods of moving objects. Finally, experimental results validate accurately the feasibility and effectiveness of the above methods on the practical data sets.
出处 《计算机应用研究》 CSCD 北大核心 2017年第2期431-435,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61003031) 上海重点科技攻关资助项目(14511107902) 上海市工程中心建设资助项目(GCZX14014) 上海市一流学科建设资助项目(XTKX2012) 沪江基金研究基地专项资助项目(C14001)
关键词 移动数据 异常区域 网格索引 核函数 傅里叶变换 活动周期 mobile data anomalous region grid indexing kernel function Fourier transform activity period
  • 相关文献

参考文献1

二级参考文献33

  • 1Cayirci E, Akyildiz IF. User mobility pattern scheme for location update and paging in wireless systems. IEEE Trans. on Mobile Computing, 2002,1(3):236-247. [doi: 10.1109/TMC.2002.1081758]. 被引量:1
  • 2Mamoulis N, Cao HP, Kollios G, Hadjieleftheriou M, Tao YF, Cheung DW. Mining, indexing, and querying historical spatiotemporal data. In: Won K, Ron K, Johannes G, William D, eds. Proc. of the 10th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2004). New York: ACM Press, 2004. 236-245. [doi: 10.1145/1014052.1014080]. 被引量:1
  • 3Yava: G, Katsaros D, Ulusoy t3, Manolopoulos Y. A data mining approach for location prediction in mobile environments. Data & Knowledge Engineering, 2005,54(2): 121-146. [doi: 10. I 016/j.datak.2004.09.004]. 被引量:1
  • 4Han JW, Kamber M. Data Mining: Concepts and Techniques. 2nd ed., San Francisco: Morgan Kaufmann Publishers, Inc., 2005. 被引量:1
  • 5Wang YD, Lim EP, Hwang SY. Efficient mining of group patterns from user movement data. Data & Knowledge Engineering, 2006,57(3):240-282. [doi: 10.1016/j.datak.2005.C.:.006]. 被引量:1
  • 6Yang J, Hu M. Trajpattern: Mining sequential patterns from imprecise trajectories of mobile objects. In: loannidis YE, Scholl MH, eds. Advances in Database Technology, Proc. of the 10th Int'l Conf. on Extending Database Technology (EDBT 2006). Munich: Springer-Verlag, 2006. 664-681. [doi: 10.1007/11687238_40]. 被引量:1
  • 7Giannotti F, Nanni M, Pedreschi D, Pinelli F. Trajectory pattern mining. In: Berkhin P, Caruana R, Wu XD, eds. Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2007). New York: ACM Press, 2007. 330-339. [doi: 10.1145/1281192.1281230]. 被引量:1
  • 8Jeung HY, Liu Q, Shen HT, Zhou XF. A hybrid prediction model for moving objects. In: Alonso G, Blakeley JA, Chert ALP, eds. Proc. of the 24th Int'l Conf. on Data Engineering (ICDE 2008). Washington: IEEE Computer Society, 2008.70-79. Idol: 10.1109/ ICDE.2008.4497415]. 被引量:1
  • 9Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Addison Wesley, 2005. 被引量:1
  • 10Gan GJ, Ma CQ, Wu JH. Data Clustering: Theory, Algorithms, and Applications. Philadelphia: SIAM, 2007. 被引量:1

共引文献8

同被引文献32

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部