期刊文献+

基于过滤-精炼策略的用户特定时间段移动轨迹特征提取

Feature Extraction for Users' Trajectories in a Period Based on Filter-Refinement Strategy
下载PDF
导出
摘要 发现移动用户在特定时间段的轨迹特征是实现用户个性化推荐服务的关键之一.采用过滤--精炼策略,研究了如何从单用户的大量轨迹数据中发现其在较长时间内的特定时间段的兴趣点.在过滤阶段,将用户连续若干天中同一特定时间段内的轨迹数据进行基于密度的聚类,从而得到用户在这些天中每天的该特定时间段的停留点.在精炼阶段,对所有的停留点再一次聚类,进而得到用户在这些天中该特定时间段的兴趣点.最后,通过实验验证了该方法的有效性. Finding features of users' trajectories in a period of time is one of the key point to realize user's personalized recommendation service. In this paper, how to find the interests in a period from the large amount of user's trajectories is presented with a filter-refinement strategy. In the filter step, the user's trajectories in the same period for several certain days are clustered based on density to obtain the user's stops; in the refinement step, the stops are clustered to obtain the user's interests. Finally, experiments show the effectiveness of this work.
出处 《计算机系统应用》 2017年第1期217-221,共5页 Computer Systems & Applications
基金 陕西省教育厅科学研究计划(14JK1307) 陕西省自然科学基金(2015JQ5157) 西安工程大学研究生创新基金(CX201630)
关键词 轨迹 聚类 停留点 兴趣点 trajectories clustering stop and move interest
  • 相关文献

参考文献10

二级参考文献293

  • 1刘经南.泛在测绘与泛在定位的概念与发展[J].数字通信世界,2011(S1):28-30. 被引量:31
  • 2张炜,李建中,刘禹.一种基于概率模型的预测性时空区域查询处理[J].软件学报,2007,18(2):279-290. 被引量:2
  • 3黄海清,张平,张曦文.基于用户偏好的智能业务选取研究[J].电子学报,2006,34(B12):2537-2540. 被引量:3
  • 4[1]Peng, W-C., Chen, M-S. Mining user moving patterns for personal data allocation in a mobile computing system. In: Proceedings of the 29th International Conference on Parallel Processing. 2000. 被引量:1
  • 5[2]Peng, W-C., Chen, M-S. Developing data allocation schemes by incremental mining of user moving patterns in a mobile computing system. 2002. http://www2.ee.ntu.edu.tw/~mschen/msc.html. 被引量:1
  • 6[3]Bayardo, R. Efficiently mining long patterns from databases. In: Hass, L.M., Tiwary, A., eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998. 85~93. 被引量:1
  • 7[4]Lin, Dao-I, Kedem, Z.M. Pincer-Search: a new algorithm for discovering the maximum frequent set. In: Schek, H.J., Saltor, F., Ramos, I., et al, eds. Proceedings of the 6th European Conference on Extending Database Technology. Heidelberg: Spring-Verlag, 1998. 105~119. 被引量:1
  • 8[5]Wu, H-K., Jin, M-H., Horng, J-T., et al. Personal paging area design based on mobile's moving behaviors. In: IEEE INFOCOM, 2001. 21~30. 被引量:1
  • 9[6]Nanopoulos, A., Manolopoulos, Y. Mining patterns from graph traversals. 2000. http://citeseer.nj.nec.com/nanopoulos01mining.html. 被引量:1
  • 10[7]Messmer, B.T., Bunke, H. Efficient subgraph isomorphism detection: a decomposition approach. IEEE Transactions on Knowledge and Data Engineering, 2000,12(2):307~323. 被引量:1

共引文献540

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部