期刊文献+

基于DTW距离的伪周期数据流异常检测 被引量:4

Anomaly Detection over Pseudo Period Data Streams Based on DTW Distance
下载PDF
导出
摘要 伪周期数据流是一类常见的数据流,广泛出现于各种监测应用中.在这类数据流中出现的异常可能蕴涵了感兴趣的领域知识,因此有必要检测异常的发生以作为进一步深入分析的基础.DTW距离较之欧氏距离具有更好的鲁棒性,采用DTW距离作为伪周期数据流不同波段间相似性的度量可以有效检测出有较少历史相似波段的异常波段,继而在此基础上提出了一种基于聚类索引的快速近似异常波段检测方法用以加速检测过程,在真实数据集上的实验表明了所提方法的有效性. Pseudo period data streams appear in a lot of applications,especially in monitoring domains.The anomalies detected over pseudo period data streams may possess significant domain knowledge which is worth to do further analysis.When Euclidean distance between time series changes greatly with the compared time series moving slightly along the time-axis,DTW(dynamic time warping) distance is suggested as a more robust distance than Euclidean distance.In this paper DTW distance is adopted as similarity measure of different wave sections in pseudo period data streams,and then the anomaly wave sections are defined,which have few historical similar counterparts based on that similarity measure.A nave algorithm is given to detect the anomaly wave sections by directly computing the DTW distance between the current wave section and all other wave sections in the historical dataset.However,the efficiency of the nave algorithm is very poor which limits its application.So a fast approximate algorithm based on the cluster index is proposed to speedup the nave method.Compared with the nave algorithm,this new method is much faster in speed and no big degrades in accuracy.Extensive experiments on the real dataset demonstrate the effectiveness of the proposed methods.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第5期893-902,共10页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2007AA010502 2007AA01Z474 2006AA01Z451) 教育部新世纪优秀人才支持计划基金项目(NCET-06-0928)~~
关键词 动态时间弯曲距离 聚类索引 伪周期数据流 波段划分 异常检测 dynamic time warping distance cluster index pseudo period data stream wave splitting anomaly detection
  • 相关文献

参考文献11

  • 1Tang L,Cui B,Li H,et al.Effective variation management for pseudo periodical streams[C] //Proc of the ACM SIGMOD Conf on Management of Data.New York:ACM,2007:257-268. 被引量:1
  • 2Joseph V,Pe M.Clinical information systems and the electronic medical record in the intensive care unit[J].Current Option in Critical Care,2002,8(6):616-624. 被引量:1
  • 3Ishiguro M,Suzuki H,Murase I,et al.Internet threat detection system using Bayesian estimation[C/OL] //Proc of the 16th Annual FIRST Conf on Computer Security Incident Handling.2004[2009-01-06].Http://www.mri.co.jp/PUBLICITY/PAPER/2004/20040620_si302.pdf. 被引量:1
  • 4Berndt D J,Clifford J.Using dynamic time warping to find patterns in time series[C] //Proc of the AAAI Workshop on Knowledge Discovery in Databases.Menlo Park,CA:AAAI,1994:359-370. 被引量:1
  • 5Athitsos V,Papapetrou P,Potamias M,et al.Approximate embedding-based subsequence matching of time series[C] //Proc of the ACM SIGMOD Int Conf on Management of Data.New York:ACM,2008:365-378. 被引量:1
  • 6苏亮..数据流分析关键技术研究[D].国防科学技术大学,2008:
  • 7肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 8邹柏贤,刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002,39(12):1645-1652. 被引量:107
  • 9Vlachos M,Yu P S,Castelli V.On periodicity detection and structural periodic similarity[C] //Proc of the SIAM Int Conf on Data Mining (SDM).Philadelphia,PA:SIAM,2005:449-460. 被引量:1
  • 10Vlachos M,Meek C,Vagena Z,et al.Identifying similarities,periodicities and bursts for online search queries[C] //Proc of the ACM SIGMOD Int Conf on Management of Data.New York:ACM,2004:131-142. 被引量:1

二级参考文献18

  • 1王叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992.. 被引量:1
  • 2G. Das, K. Lin, H. Mannila, et al.Rule discovery from time series. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 16--22. 被引量:1
  • 3A. Debregeas, G. Hebrail. Interactive interpretation of Kohonen maps applied to curves. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 179--183. 被引量:1
  • 4E. Keogh, M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering andrelevance feedback. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 239--241. 被引量:1
  • 5Z. M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22 (11) : 1266-- 1276. 被引量:1
  • 6S. Park, S. Kim, W. Chu. Segment-based approach for subsequence searches in sequence databases. The 16th ACM Symp on Applied Computing, Las Vegas, NV, 2001. 被引量:1
  • 7S. Kim, S. Park, W. Chu. An index-based approach for similarity search supporting time warping in large sequence databases. The 17th Int'l Conf. on Data Engineering,Heidelberg, Germany, 2001. 被引量:1
  • 8L. Rabiner, B. H. Juang. Fundamentals of Speech Recognition.Englewood Cliffs, NJ: Prentice-Hall, 1993. 被引量:1
  • 9H. J. L. M. Vullings, M. H. G. Verhaegen, H. B.Verbruggen. ECG segmentation using time warping. In: Proc. of 2nd Int'l Symposium on Advances in Intelligent Data Analysis,1997. 275--285. 被引量:1
  • 10D. J. Berndt, J. Clifford. Using dynamic time warping to find patterns in time series. Working Notes of the Knowledge Discovery in Databases Workshop, Seatle, WA, 1994. 被引量:1

共引文献164

同被引文献49

  • 1贺前华,韦岗,徐秉铮.基于并行基因算法的语音识别方法[J].华南理工大学学报(自然科学版),1996,24(10):64-71. 被引量:1
  • 2张二华,高林,马仁安,杨静宇.三维地震数据可视化原理及方法[J].CT理论与应用研究(中英文),2007,16(3):20-28. 被引量:11
  • 3Rabiner L, Rosenberg A, Levinson S. Consideration in dynamic time warping algorithms for discrete word recognition. IEEE Trans Acoust Speech Signal Process, 1987, 26 (12) : 575. 被引量:1
  • 4Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequences database. In: Lomet D, ed. Proc. of the 4th Int' 1 Conf. of Foundations of Data Organization and Algorithms. Chicago: Springer-Verlag, 1993. 69 -84. 被引量:1
  • 5Faloutsos C, Ranganathan M, blandoponlos Y. Fast subsequence matching in time-series databases. In: Snodgrass R, Winslett M, ed. Proc. of the' 94 ACM SIGMOD Conf. Mineapolis: ACM Press, 1994. 419-429. 被引量:1
  • 6Berndt D J, Clifford J . Using dynamic time warping to find patterns in time series E C J. Proe of the AAAI Workshop on Knowledge Discovery in Database. Menlo Park, CA: AAAI, 1994: 359-370. 被引量:1
  • 7Cheng Tao, Li Zhilin. A Muhi-scale Approach for Spatio- temporal Outlier Detection [ J]. Transactions in GIS, 2006,10 (2): 253-263. 被引量:1
  • 8Li YM, Chen HG, Wu ZQ. Dynamic Time Warping Distance Method for Similarity Test of Muhipoint Ground Motion Field [J]. Mathematical Problems in Engineering, 2010, 749517: 1-12. 被引量:1
  • 9陆薛妹,胡轶,方建安.基于分段极值DTW距离的时间序列相似性度量[J].微计算机信息,2007,23(27):204-206. 被引量:5
  • 10BARROS,HOLZLE U.The datacenter as a computer:an introductionto the design of warehouse-scale machines. Synthesis Lectures onComputer Architecture . 2009 被引量:1

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部