期刊文献+

基于改进的近邻传播聚类算法的Gap统计研究 被引量:3

Study on Gap Statistic Based on Modified Affinity Propagation Clustering
下载PDF
导出
摘要 由于K-means算法初始聚类中心的选取具有随机性,聚类结果可能不稳定,导致Gap统计估计的聚类数也可能不稳定。针对这些不足,提出一种改进的近邻传播算法-mAP。该算法考察数据的全局分布特性,不同的点赋予不同的P值。在Gap统计中用mAP算法代替K-means算法,提出基于mAP的Gap统计mAPGap。mAP能在较短的时间内得到较好的聚类效果,而且不需要预先设定初始聚类中心,聚类结果更稳定。实验结果表明,mAPGap在估计聚类数的稳定性和聚类精度上都优于原Gap。 Due to the randomness of choosing the initial clustering of K-means method, it may cause the instability of clustering results and then lead to that of clustering numbers which are estimated by Gap statistic. Taking consideration of those disadvantages, an modified AP clustering (mAP) is presented which utilizes the global distribution to give different P to different points, mAP method is put forward to substitute the K -means in Gap statistic named mAPGap, mAP method has more stable clustering center because the initial clustering center and numbers are not needed in advance and it can get better clustering in short time. The experimental results demonstrate mAPGap is superior to Gap in clustering stability and accuracy.
出处 《计算机技术与发展》 2017年第1期182-185,共4页 Computer Technology and Development
基金 全国统计科学研究计划重点项目(2013LZ45)
关键词 聚类分析 近邻传播聚类 偏向参数 K-MEANS算法 GAP统计 cluster analysis affinity propagation clustering preference K -means algorithm Gap statistic
  • 相关文献

参考文献10

二级参考文献38

  • 1Gelbard R, Goldman O, Spiegler I. Investigating Diversity of Clustering Methods: An Empirical Comparison[J]. Data & Knowledge Engineering, 2007, 63(1): 155-166. 被引量:1
  • 2Frey B J, Dueck D. Clustering by Passing Messages Between Data Points[J]. Science, 2007, 315(5814): 972-976. 被引量:1
  • 3Thedoridis S, Koutroumbas K. Pattern Recognition[M]. 3rd ed. Beijing, China: Publishing House of Electronics Industry, 2010. 被引量:1
  • 4Rudin L, Osher S, Fateml E. Nonlinear total variation based noise removal algorithm [A]. In: Proceedings of the llth Annual International Conference of the Center for Nonlinear Studies on Experimental Mathematics[C]. Los Alamos, 1992 : 259 ~ 268. 被引量:1
  • 5Meyer Yves. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations [M]. Boston: American Mathematical Society,2001. 被引量:1
  • 6Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of Optical Society of America, 1972, 62( 1 ) :55 ~59. 被引量:1
  • 7Cross G, Jaln A. Markov random field texture models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983,5(1) :25 ~39. 被引量:1
  • 8Tibshirani R, Walther G, Hastie T. Estimating the Number of Clusters in a Dataset via the Gap Statistic [R]. SN (2000) JRSSB,Palo Alto: Stanford University, 2000. 被引量:1
  • 9王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94
  • 10ZHOU Yong,XING Yan. Summary of affinity propagation[J].Current Advances in Materials and Processes,2011.811-816. 被引量:1

共引文献206

同被引文献25

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部