期刊文献+

密度不敏感的近邻传播聚类算法研究 被引量:7

Research on Density-insensitive Affinity Propagation Clustering Algorithm
下载PDF
导出
摘要 近邻传播算法在非凸形、密度不均匀的数据集上很难得到理想的聚类结果。为此,基于核聚类的思想,将数据集非线性地映射到高维空间,使数据集更加分离。利用共享最近邻的相似度度量方法,提出一种密度不敏感的近邻传播算法DIS-AP,以弥补原算法易受特征集维数和密度影响的缺点,从而有效解决数据集非凸和密度不均匀问题,拓宽算法的应用范围。仿真实验结果证明,DIS-AP算法具有更好的聚类性能。 To solve the problem that Affinity Propagation(AP) algorithm has poor performance on non-convex and asymmetrical density dataset,kernel clustering is introduced into algorithm.The dataset in kernel space are farther separable through non-linear mapping.Then a similarity measure with shared nearest neighbor is imported,and a density insensitive-affinity propagation algorithm named Density-insensitive Affinity Propagation(DIS-AP) is proposed.DIS-AP overcomes the shortcoming of original AP based on Euclidean distance that is easily influenced by the dimension and density of dataset.It can effectively solve the problem of clustering non-convex and asymmetrical density dataset,and developed its applied range.Experimental results show that this algorithm has better clustering effect.
出处 《计算机工程》 CAS CSCD 2012年第2期159-162,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2008AA011002 2011AA010603)
关键词 近邻传播 相似度度量 核聚类 共享最近邻 聚类分析 密度不敏感 Affinity Propagation(AP) similarity measurement kernel clustering shared nearest neighbor clustering analysis density insensitive
  • 相关文献

参考文献6

二级参考文献4

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Easter M, Kriegek H E Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Databases[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining. [S. l.]: AAAI Press, 1996. 被引量:1
  • 3Beckrnann N, Kriegel H P, Schneider R, et al. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles[C]// Proc. of ACM International Conference on Management of Data. Atlantic City, USA: ACM Press, 1990. 被引量:1
  • 4周水庚,周傲英,曹晶.基于数据分区的DBSCAN算法[J].计算机研究与发展,2000,37(10):1153-1159. 被引量:98

共引文献1256

同被引文献48

  • 1黄陈蓉,张正军,吴慧中.图像边缘检测的多尺度灰度Gap统计模型[J].中国图象图形学报,2005,10(8):1018-1023. 被引量:4
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:290
  • 3王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:144
  • 4Frey B J,Dueck D. Clustering by Passing Messages Between Data Points[J].Science,2007,(5814):972-976. 被引量:1
  • 5Frey B J,Dueck D. Response to Comment on "Clustering by Passing Messages Between Data Points"[J].Science,2008,(5864):726. 被引量:1
  • 6Leone M,Sumedha S,Weigt M. Clustering by Soft-constraint Affinity Propagation:Applications to Gene-expression Data[J].Bioin formatics,2007,(20):2708-2715. 被引量:1
  • 7Lenoe M,Sumedha,Weigt M. Unsupervised and Semi-supervised Clustering by Message Passing:Soft-constrain Affinity Propagation[J].The European Physical Journal B,2008.125-135. 被引量:1
  • 8Zhang Xiang liang,Wang Wei,Kjetil N(o)rvig. K-AP..Generating Specified K Clusters by Efficient Affinity Propagation[M].ICDM,2010.1187-1192. 被引量:1
  • 9Tao M L, Zhou F, Liu Y, et al. Tensorial independent component analysis-based feature extraction for polarime- tric SAR data classification [ J ]. IEEE Trans on Geosci Remote Sens, 2015, 53 (5): 248t-2495. 被引量:1
  • 10Lee J S, Grunes M R, Ainsworth T L, et al. Unsuper- vised classification using polarimetric decomposition and the complex Wishart classifier[ J ]. IEEE Trans on Geosci Remote Sens, 1999, 37 (5) : 2249-2258. 被引量:1

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部