期刊文献+

基于改进相似性度量的邻近传播聚类算法 被引量:3

Affinity Propagation Clustering Algorithms Based on Improved Similarity Measure
下载PDF
导出
摘要 邻近传播(Affinity Propagation,AP)聚类将数据集中所有数据点均视为潜在的聚类中心,并采用欧氏距离法计算输入相似度矩阵,导致其性能对变形十分敏感。针对这一缺陷,提出了采用两种不同的相似性度量方法来计算数据集中两个数据点之间的相似度。分别将明可夫斯基(Minkowski)和切比雪夫(Chebychev)相似性度量引入到AP聚类中,替换原有的欧氏距离度量来构建相似性矩阵。在UCI机器学习数据集上,利用Jaccard指数和Fowlkes-Mlowers对提出方法进行了量化评估。实验结果表明,基于明可夫斯基距离和切比雪夫距离的AP聚类方法在总体精度上优于现有的欧氏距离。 Affinity propagation(AP)clustering treats all data points in the dataset as potential cluster centers,and uses the Euclidean distance method to calculate the input similarity matrix,which results in its performance being very sensitive to deformation.In view of this defect,two different similarity measurement methods are proposed to calculate the similarity between two data points in the data set.Minkowski and Chebychev similarity measures are introduced into the AP cluster,respectively,and the original Euclidean distance measure is replaced to construct the similarity matrix.On the UCI machine learning data set,the proposed method is quantitatively evaluated using Jaccard index and Fowlkes-Mlowers.The experimental results show that the AP clustering method based on Minkowski distance and Chebyshev distance has better overall accuracy than the existing Euclidean distance.
作者 温爱红 徐草草 WEN Aihong;XU Caocao(Engineering and Technical College, Chengdu University of Technology, Leshan 614007, China)
出处 《微型电脑应用》 2020年第9期173-176,共4页 Microcomputer Applications
关键词 数据聚类 邻近传播算法 欧氏距离 相似性度量 聚类中心 data clustering proximity propagation algorithm Euclidean distance similarity measure cluster center
  • 相关文献

参考文献6

二级参考文献82

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 3Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976. 被引量:1
  • 4Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600. 被引量:1
  • 5Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141. 被引量:1
  • 6Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428. 被引量:1
  • 7Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371. 被引量:1
  • 8Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715. 被引量:1
  • 9Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415. 被引量:1
  • 10Little M A, McSharry P E, Hunter E J, and Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022. 被引量:1

共引文献141

同被引文献33

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部