期刊文献+

基于多特征融合的室内场景识别 被引量:7

Indoor Scene Recognition Based on Multiple Feature Fusion
下载PDF
导出
摘要 针对室内场景识别,提出将全局特征与局部特征相结合,利用两类特征在空间尺度上的互补特性,获取更全面的场景图像特征。分别采用Gist算法和PHOG算法进行全局和局部的特征提取,并确定以Gist+i*PHOG形式进行特征融合。在获得场景图像特征的基础上,引入支持向量机(SVM)进行室内场景图像的识别,利用1-a-1方法实现室内场景多分类。实验结果表明,该方法对于室内典型场景的识别率可以达到60-80%。 Aiming at indoor scene recognition, a more comprehensive feature extraction method is proposed, which combines the complementary property of local features and global features on the spatial scale. Gist algorithm and PHOG algorithm are used to and extract the global features and local features, respectively. Gist+i*PHOG style is determined to implement the feature fusion. Based on the scene feature, support vector machine (SVM) is adopted to identify the indoor scene images and 1-a-1 method is used for multi-classification. Experimental results show that the proposed method can obtain the recognition rate of 60-80% for typical indoor scenes.
作者 马宁 陶亮
出处 《控制工程》 CSCD 北大核心 2016年第11期1845-1850,共6页 Control Engineering of China
关键词 场景识别 特征提取 数据融合 支持向量机 多分类 Scene recognition feature extraction data fusion support vector machine multiple classification
  • 相关文献

参考文献3

二级参考文献63

  • 1Blei D M,Ng A Y,Jordan M I. Latent Dirichlet allocationJ J}. Machine Learning Research,2003,3:993 - 1022. 被引量:1
  • 2LaffertyJ D, Blei MD. Correlated topic models[AJ . Advances in Neural. Information Processing Systems, Proceedings of the 200'5 Cooferencel C]. Vancouver: Bradford Books,2IDU47 -155. 被引量:1
  • 3u W,McCallmn A.Pachinko allocation:DAG-structured mix?ture models of topic correlations[AJ . Proceedings of the 23rd International Conference on Machine Learningj C] . New York: ACM,2006.577 - 584. 被引量:1
  • 4D M Blei.J McAuliffe. Supervised topic modelsl A] . Advances in Neural Information Processing System[CJ. Vancouver, British Colmnbia Canada:Curran,2008.121- 128. 被引量:1
  • 5Ramage D, Hall D, Nallapati R, et al. Labeled IDA: A super?vised topic model for credit attribution in multi-labeled corpora[AJ. Proceedings of the 2009 Conference on Empirical Meth?ods in Natural Language Processing Association for Computa?tional linguistics[CJ . Singapore: Springer, 2009 . 248 - 256. 被引量:1
  • 6Ramage D ,Manning CD, Dumais S. Partially labeled topic models for interpretable text mining[A]. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[cJ . New York:ACM,2011.457 -465. 被引量:1
  • 7Hofmann T. Probabilistic latent semantic analysis[AJ . Proceedings of the FIfteenth Conference on Uncertainty in Artificial Intelli?gence[CJ . Morgan Kaufmann, San Mateo, CA: Morgan Kaufmann Publishers Inc, 1999.289 - 2%. 被引量:1
  • 8Minka T, Lafferty 1. Expectation-propagation for the genera?tive aspect model[AJ . Proceedings of the Eighteenth Confer?ence on Uncertainty in Artificial Intelligence[CJ . Morgan Kaufmann, San Mateo, CA: Morgan Kaufinann Publishers Inc, 2002 . 352 - 359. 被引量:1
  • 9Griffiths T L, Steyvers M. Finding scientific topics[J] . Nation?al Academy of Sciences of the United States of America, 2004,101 (Suppl 1) : 5228 - 5235. 被引量:1
  • 10Griffiths T L, Steyvers M, Blei D M, et al. Integrating topics and syntax[J] . Advances in Neural Information Processing Systems,2005, 17: 537 - 544. 被引量:1

共引文献36

同被引文献41

引证文献7

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部