期刊文献+

基于稀疏表示全局字典学习的图像分类方法 被引量:9

Image classification based on global dictionary learning method with sparse representation
下载PDF
导出
摘要 针对传统的稀疏表示字典学习图像分类方法在大规模分布式环境下效率低下的问题,设计一种基于稀疏表示全局字典的图像学习方法。将传统的字典学习步骤分布到并行节点上,使用凸优化方法在节点上学习局部字典并实时更新全局字典,从而提高字典学习效率和大规模数据的分类效率。最后在MapReduce平台上进行并行化实验,结果显示该方法在不影响分类精度的情况下对大规模分布式数据的分类有明显的加速,可以更高效地运用于各种大规模图像分类任务中。 To address the problem of low efficiency for traditional massive image classification, a sparse representation based global dictionary learning method was designed. The traditional dictionary learning steps were distributed to parallel nodes, local dictionaries were first learnt in local nodes and then a global dictionary was updated in real time by those local dictionaries and variables through using convex optimization method, thereby enhancing the efficiency of dictionary learning and classification of massive data. Experiments on the MapReduce platform show that the new algorithm has better performance than classical image classification methods without affecting the classification accuracy, and the new algorithm can be widely used in massive and distributed image classification tasks.
出处 《计算机应用》 CSCD 北大核心 2015年第2期499-501,514,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61152003)
关键词 字典学习 图像分类 稀疏表示 大规模数据 MAPREDUCE dictionary learning image classification sparse representation massive data MapReduce
  • 相关文献

参考文献14

  • 1WRIGHT J, YANG A Y, GANESH A, et al. Robust face recegni- tion via sparse representation [ J]. IEEE Transactions on PatterrL A- nalysis and Machine Intelligence, 2009, 31(2): 210-227. 被引量:1
  • 2YANG M, ZHANG D, FENG X, et al. Fisher discrimination dic- tionary learning for sparse representation [ C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscat- away: IEEE, 2011:543-550. 被引量:1
  • 3WRIGHT J, YANG A Y, GANESH A, et al. Robust face recogni- tion via sparse representation [ J]. 1EEE Transactions on Patterr A- nalysis and Machine Intelligence, 2009, 31(2): 210-227. 被引量:1
  • 4TROPP J A, WRIGHT S J. Computational methods for sparse slu- tion of linear inverse problems [ J]. Proceedings of the IEEE, 2010, 98(6) : 948 -958. 被引量:1
  • 5AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation [ J]. IEEE Transactions on Signal Processing, 2006, 54(11) : 4311 - 4322. 被引量:1
  • 6JIANG Z, LIN Z, DAVIS L S. Learning a discriminative dictionary for sparse coding via label consistent K-SVD [ C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recoi- tion. Piscataway: IEEE, 2011:1697-1704. 被引量:1
  • 7MAIRAL J, PONCE J, SAPIRO G, et al. Supervised dictionary learning [ C]//Proceedings of the 2009 Neural Information Process- ing Systems Conference. [ S. 1. ] : NIPS, 2009:1033 - 1040. 被引量:1
  • 8SINDHWANI V, GHOTING A. Large-scale distributed non-negative sparse coding and sparse dictionary learning [ C]// KDD '12: Pro- ceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 489 - 497. 被引量:1
  • 9张琦..基于MapReduce的分布式规则匹配系统的研究与实现[D].浙江大学,2011:
  • 10DEAN J, GHEMAWAT S. MapReduce: Simplified data processing on large clusters [ J]. Communications of the ACM, 2008, 51 (1) : 107 - 113. 被引量:1

同被引文献73

  • 1Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227. 被引量:1
  • 2Tropp J A, Wright S J.Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010,98(6):948-958. 被引量:1
  • 3Gao S, Tsang I, Chia L, et al. Local features are not lonelylaplacian sparse coding for image classification[C]// IEEE Conference on Computer Vision and PatternRecognition(CVPR). 2010:3555-3561. 被引量:1
  • 4Wang Jinjun, Yang Jianchao, Yu Kai, et al. Localityconstrained linear coding for image classification[C]// IEEE Conference on Computer Vision and PatternRecognition(CVPR). 2010:3360-3367. 被引量:1
  • 5Yang Jianchao, Yu Kai, Gong Yihong, et al. Linear spatial pyramid matching using sparse coding for image classification [C]// IEEE Conference on Computer Vision andPattern Recognition. 2009:1794-1801. 被引量:1
  • 6Short N, Hu S, Gurram P, et al. Improving crossmodal face recognition using polarimetric imaging[J]. Optics Letters, 2015,40(6):882-885. 被引量:1
  • 7Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[C]// Advances in Neural Information Processing Systems. 2006:801-808. 被引量:1
  • 8Bay H, Tuyteplaars T, van Gool L. SURF:Speeded up robust features[C]// Proceedings of the European Conference on Computer Vision. 2006:404-417. 被引量:1
  • 9张江,王年,梁栋,唐俊,周梅菊.基于非负矩阵分解与邻接谱的图像分类[J].中国科学技术大学学报,2008,38(3):247-251. 被引量:6
  • 10谢文兰,石跃祥,肖平.应用BP神经网络对自然图像分类[J].计算机工程与应用,2010,46(2):163-166. 被引量:29

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部