期刊文献+

基于自主发育神经网络的机器人室内场景识别 被引量:8

Robot Indoor Scenes Recognition Based on Autonomous Developmental Neural Network
原文传递
导出
摘要 提出一种基于自主发育神经网络的机器人室内场景识别方法.利用3层自组织发育神经网络构建脑智模型.在发育阶段为了模拟神经元侧抑制效应,采用top-k竞争机制,获胜的神经元更新相应的突触权重向量,学习过程采用叶分量分析算法(lobe component analysis,LCA).在神经元突触得到加强之后,可以根据当前环境信息得到相应的思维结论,从而实现移动机器人对室内场景的自主识别.机器人通过类人思维方式,将学习结果以"知识"的形式储存,其思维结论得益于以往知识的积累.实验结果证明,作为"知识"的载体,文中所提的自主发育神经网络模型完全满足机器人场景识别任务需要,同时也实现了机器人对自己"所见"的学习、理解和成长. A method of robot indoor scene recognition based on autonomous developmental neural network is proposed. 3-layer adaptive developmental neural network is used to build the brain-mind model. In developing phase, top-k competition is utilized to simulate the lateral inhibition of neurons, and the winner updates the synapse weight vector with the lobe component analysis(LCA) algorithm. The strengthened neurons can get thinking results according to current environment information, and indoor scenes can be recognized autonomously by mobile robots. Through human-like thinking, the learning results are stored as "knowledge", and the thinking results are derived from experience. Experimental results show that the model of autonomous developmental neural network proposed as the carrier of "knowledge", fully meets the need of indoor scenes recognition task, and realizes the autonomous learning, understanding and growth of robots based on vision.
出处 《机器人》 EI CSCD 北大核心 2013年第6期703-708,743,共7页 Robot
基金 国家863计划资助项目(2006AA04Z246) 教育部重大创新工程培育资金资助项目(708045)
关键词 自主发育神经网络 叶分量分析算法 机器人 场景识别 autonomous developmental neural network LCA(lobe component analysis) robot scene recognition
  • 相关文献

参考文献18

  • 1Albus J S.A model of computation and representation in the brain[J].Information Sciences,2010,180(9):1519-1554. 被引量:1
  • 2George D,Hawkins J.Towards a mathematical theory of cortical micro-circuits[J].PLoS Computational Biology,2009,5(10):1-26. 被引量:1
  • 3Tenenbaum J B,Griffiths T L,Kemp C.Theory-based Bayesian models of inductive learning and reasoning[J].Trends in Cognitive Sciences,2006,10(7):309-318. 被引量:1
  • 4Weng J.Three theorems:Brain-like networks logically reason and optimally generalize[C]//Proceeding of International Joint Conference on Neural Networks.Piscataway,USA:IEEE,2011:2983-2990. 被引量:1
  • 5Cox B R,Krichmar J L.Neuromodulation as a robot controller:A brain-inspired strategy for controlling autonomous robots[J].IEEE Robotics and Automation Magazine,2009,16(3):72-80. 被引量:1
  • 6Almassy N,Edelman G M,Sporns O.Behavioral constraints in the development of neuronal properties:A cortical model embedded in a real-world device[J].Cerebral Cortex,1998,8(4):346-361. 被引量:1
  • 7Solgi M,Weng J.Developmental stereo:Emergence of disparity preference in models of the visual cortex[J].IEEE Transactions on Autonomous Mental Development,2009,1(4):238-252. 被引量:1
  • 8李桂芝,安成万,杨国胜,谭民,涂序彦.基于场景识别的移动机器人定位方法研究[J].机器人,2005,27(2):123-127. 被引量:20
  • 9Vogel J,Schiele B.Natural scene retrieval based a semantic modeling step[C]//International Conference on Image and Video Retrieval.Berlin,Germany:Springer-Verlag,2004:207-215. 被引量:1
  • 10张骏,高隽,谢昭,吴良海.基于统计分析Boosting的复杂场景目标识别方法研究[J].仪器仪表学报,2010,31(8):1788-1795. 被引量:7

二级参考文献58

  • 1孔刚,张启衡,许俊平.一种复杂背景下运动扩展目标识别算法[J].仪器仪表学报,2005,26(z1):712-715. 被引量:4
  • 2TU Z W.Probabilistic boosting-tree:learning discriminative models for classification.recognition,and clustering[A].IEEE International Conference on Computer Vision[C].Beijing,China,2005,2:1589-1596. 被引量:1
  • 3FRIEDMAN J,HASTIE T,TIBSHIRANI R.Additive logistic regression:A statistical view of Boosting[J].The Annals of Statistics,2000,38(2):337-374. 被引量:1
  • 4SCHAPIRE R E.The boosting approach to machine learning:an overview[A].MSRI Workshop on Nonlinear Estimation and Classification[C] ,New York,2002:149-172. 被引量:1
  • 5BENNETT K.Decision tree construction via linear programming[A].Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society[C].Utica,Illinois,1992:97-101. 被引量:1
  • 6ULLMAN S,SALI E,VIDAL N M.A fragment-based approach to object representation and classification[A].Proceedings Fourth International Workshop Visual Form[C].Capri,Italy,2001:85-100. 被引量:1
  • 7RUSSELL B C,TORRALBA A,MURPHY K P,et al.LabelMe:A database and web-based tool for image annotation[J].International Journal of Computer Vision,2008,77(1-3):157-173. 被引量:1
  • 8LIU C,YUEN J,TORRALBA A,et al.SIFT flow:dense correspondence across difference scenes[A].European Conference on Computer Vision[C].Marseille,France,2008:28-42. 被引量:1
  • 9LI L J,LI F F.What,where and who Classifying event by scene and object recognition[A].IEEE International Conference on Computer Vision[C].Rio de Janeiro,Brazil 2007:1-8. 被引量:1
  • 10VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Hawaii,2001,1(2):511-518. 被引量:1

共引文献42

同被引文献40

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部