期刊文献+

基于平行网格变换的频繁项集生成算法

An Algorithm for Frequent Item Set Generation Using Parallel Mesh Transposition
下载PDF
导出
摘要 关联规则研究数据库中一组互不相属对象之间的相关性,挖掘出具有一定意义的关联关系、挖掘算法如Apriori、FP-Growth等,这些算法需要反复多次扫描整个数据库导致I/O负载增加,降低了CPU的性能.文章通过对数据库进行转置和平行变换以减少扫描的次数,从而提高算法效率. Association rules are interesting correlations among attributes in a database.It plays an important role in generating frequent item set from large database.It is discovered that interesting association relationship is among business transaction records in many business decision-making process,such as catalog decision,cross-marketing,and loss-leader analysis.It is also used to extract hidden knowledge from large datasets.The Association Rules Mining algorithms such as Apriori,FP-Growth require repeated scans over the entire database.All the input/output overheads are being generated during repeated scanning of the entire database and decreases the performance of CPU,memory and I/O overheads.The Algorithm uses databases in transposed form and database transposition is done using Parallel transposition algorithm so as to generate all significant association rules number of passes required reduced.
作者 马良斋 周渊 姜滨 Ma Liang-zhai Zhou Yuan Jiang Bing(School of Electronic and Information Engineering, Lanzhou Jiaotong University School of Chemical and Biological Engineering, Lanzhou Jiaotong University,Lanzhou Gansu 730070)
出处 《河西学院学报》 2016年第5期46-51,共6页 Journal of Hexi University
基金 甘肃省自然科学基金项目(项目编号:1212RJZA059)
关键词 数据挖掘 关联规则挖掘(ARM) 关联规则 APRIORI算法 Data mining Association rules mining Association rules Apriori algorithm
  • 相关文献

参考文献4

二级参考文献35

  • 1苏毅娟,严小卫.一种改进的频繁集挖掘方法[J].广西师范大学学报(自然科学版),2001,19(3):22-26. 被引量:10
  • 2Agrawal R ,Imielinski T ,Swami A. Mining association rules between sets of items in large databases[A]. Proceedings of the ACM SIGMOD international conference on management of data[C]. New York:ACM Press, 1993. 207-216. 被引量:1
  • 3Jong Soo Park,Ming-Syan Chen ,Philip S Yu. Using a hash based method with transaction trimming for mining association rules [J]. IEEE Transactions on Knowledge and Data Engineering, 1997,9(5):813-825. 被引量:1
  • 4Agrawal R,Srikant R. Fast algorithms for mining association rules[A]. Proceedings of the 20th VLDB conference[C].San Mateo:Morgan Kaufmann Publishers,1994.487-499. 被引量:1
  • 5Han J,Pei J,Yin Y. Mining frequent patterns without candidate generation[A]. Proceedings of the 2000 ACM SIG-MOD international conference on management of data[C]. New York:ACM Press,2000.1-12. 被引量:1
  • 6Chan M K, Ada F, Man H W. Mining Fuzzy Association Rules in Database. In:Proc. of the ACM Sixth International Conf. on Information and Knowledge Management, Las Vegas, Neveda, 1997:10-14 被引量:1
  • 7Hathaway R J, Davenport J W, Bezdek J C. Relational Dual of the Cmeans Algorithms. Pattern Recognition, 1989,22(2): 205-212 被引量:1
  • 8何丽.基于规模压缩的关联规则数据挖掘算法研究[J].计算机科学,2007,34(9):148-150. 被引量:1
  • 9Agrawal R, Imielinaki T, Swami A. Mining association rules be- tween sets items in large databases [C] // Proceedings of the ACM SIGMOD Conference on Management of Date. Washing- ton, D. C, 1993 : 207-216. 被引量:1
  • 10Han J, Pei J, Yin Y. Mining Frequent Patterns without Candi- date Generations[C]Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, Tex- as,USA,2000:1-12. 被引量:1

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部