期刊文献+

一种基于子图特征的快速图像配准算法 被引量:4

Fast Image Registration Algorithm Based on Sub-Image Features
下载PDF
导出
摘要 针对大面积图像配准鲁棒性和实时性差的问题,提出一种基于子图特征的快速图像配准算法.提取对比度强、结构清晰的子图,依次采用改进的Harris检测算法提取角点,4阶梯度向量对角点进行描述,欧氏距离进行特征向量相似性度量,并利用最小二乘法进行变换参数估计,采用双线性插值法重建待配准图像.实验结果表明,子图法不但比大图法的配准精度高,配准速度快,而且这种思想可以推广到FMT和MI配准法等其他配准算法. For the poor robustness and real-time problem of large area image registration, a newfast image registration algorithm based on the sub-image features was proposed. First, the sub-image with strong contrast, clear structure was extracted. And then sequentially, the improvedHarris detector was taken to extract the corners, the 4-order gradient vectors was used todescribe the corners, the improved Euclidean distance was taken to measure eigenvectors'similarity, and the transformation parameters were estimated with Least Squares. Lastly,bilinear interpolation was used to reconstruct the registered image. Experimental results showthat the registration accuracy and registration speed of the proposed method are higher than thewhole image method, and this idea can be extended to other registration algorithm such as FMTand MI registration methods.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第7期744-749,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61171194) 新起点计划项目(zk10201305)
关键词 子图 HARRIS角点 梯度向量 变换参数估计 sub image Harris eorner gradient vector transformation parameters estimation
  • 相关文献

参考文献10

  • 1Zitova B, Flusser J. Image registration methods: a surveyEJ2. Image and Vision Computing, 2003, 21: 977 - 1000. 被引量:1
  • 2Wyawahare Medha V, Patil Dr Pradeep M, Abhyankar Hemant K. Image registration techniques: an overview [-J~. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2009, 2 (3).. 11 - 28. 被引量:1
  • 3Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors [- J~ . International Journal of Computer Vision, 2004,60(1) ..63 - 86. 被引量:1
  • 4Harris C, Stephens M. A combined corner and edge detector[C~//Proeeedings of Fourth Allvey Conference. Manchester: University of Sheffield Printing Unit, 1988:147 - 151. 被引量:1
  • 5Lowe D. Distinctive image features from scale-invariant keypoints[J]. IJCV, 2004, 20(2) :91- 110. 被引量:1
  • 6Wen G J, Lti J, Yu W. A high performance feature- matching method for image registration by combining spatial and similarity information ~ J 1. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46:1266 - 1277. 被引量:1
  • 7Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[-J~. PAMI, 2005,27(10) .. 1615 - 1630. 被引量:1
  • 8Lee Jaehak, Kim Yongsun, Lee Duhgoon, et al. Robust CCD and IR image registration using gradient-based statistical information [- J 1. IEEE Signal Processing Letters, 2010,17(4) :347 - 350. 被引量:1
  • 9李晖,彭玉华,尹勇.基于平移旋转不变的塔式分解和模糊梯度场的医学图像配准[J].电子学报,2009,37(4):854-859. 被引量:3
  • 10Young Richard A. The Gaussian derivative model for spatial vision.. I. retinal mechanisms E J-]. Spatial Vision, 1987,2(4) ..273 - 293. 被引量:1

二级参考文献17

  • 1练秋生,孔令富.具有多方向选择性的小波构造[J].电子学报,2005,33(10):1905-1909. 被引量:6
  • 2刘法贵,赵娟.模糊贴近度及应用[J].华北水利水电学院学报,2006,27(3):104-106. 被引量:26
  • 3Zitova B, Flusser J. Image registration methods: a survey[ J]. Image and Vision Computing,2003,21 (11) :977 - 1000. 被引量:1
  • 4Maintz J, Viergever M. A Survey of medical image registration [ J ]. Medical Image Analysis, 1998,2( 1 ) : 1 - 16. 被引量:1
  • 5Allen R, Kamangar F, Stokely E. Laplacian and orthogonal wavelet pyramid decompositions in coarse-to-fine registration [ J]. IEEE Transactions on Signal Processing, 1993,41 (12) : 3536 - 3541. 被引量:1
  • 6Thevenaz P, Unser M. Optimization of mutual information for multiresolution image registration[ J ]. IEEE, Transactions Image Processing, 2000,9(12) : 2083 - 2099. 被引量:1
  • 7Le Moigne J. Parallel registration of multi-sensor remotely sensed imagery using wavelet coefficients [ A ]. The International Society for Optical Engineering, Wavelet Applications Conference[ C]. Orlando: SPIE, 1994.432 - 443. 被引量:1
  • 8Kaymaz E, Lemer B, Campbell W J, et al. Registration of satellite imagery utilizing the low-low components of the wavelet transform[ A]. Emerging Applications of Computer Vision[ C]. Washington, DC, USA: SPIE, 1997.45 - 54. 被引量:1
  • 9Simoncelli E P, Freeman W T, Adelson E H, et al. Shiftable multiscale transforms [ J ]. IEEE Transactions on Information Theory, 1992,38(2) :587 - 607. 被引量:1
  • 10Le Moigne J, Zavorine I. An application of rotation- and translation-invariant overcomplete wavelets to the registration of remotely sensed imagery[ A ]. Wavelet Applications Ⅵ[ C]. Orlando: SPIE Aerosense, 1999.130 - 140. 被引量:1

共引文献2

同被引文献48

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部