期刊文献+

基于鱼眼镜头的全方位视觉参数标定与畸变矫正 被引量:33

Omni-Directional Vision Parameter Calibration and Rectification Based on Fish-Eye Lens
下载PDF
导出
摘要 针对利用鱼眼镜头构建的全方位视觉系统研究内外部参数标定及图像畸变矫正方法,建立成像系统模型,提出成像系统中需要标定的内、外部参数;采用改进的线性标定法标定图像中心,研究径向畸变系数及其他参数的标定方法;在参数标定的基础上,分别利用等距投影和支持向量机训练方法,对图像中的像素点及整幅鱼眼图像进行畸变矫正.实验证明,研究的标定方法可准确地标定出视觉系统的内外部参数;基于等距投影的像素点矫正可应用于精确定位视觉系统的空间位置;基于支持向量机训练方法的全图像畸变矫正可获得理想的鱼眼图像矫正效果,所提出的参数标定和畸变矫正方法将有利于与鱼眼镜头在机器视觉领域的应用. A parameter calibration and rectification method for omnidirectional vision system based on fish-eye lens was investigated in this paper.An imaging system model was established,which indicated the interior and exterior parameters.The optic center was calibrated by an improved linearization method,and the other parameters such as the radial distortion parameters kx,ky are analyzed too.On this basis,the important point and fish-eye lens image will be rectified by the equidistance projection theorem and support vector machine training,respectively.The experiments prove that the interior and exterior parameters can be calibrated accurately utilizing the calibration methods proposed.The important point rectification method based on equidistance projection theorem can be used to calculate the precise localization for vision system.An ideal rectification image can be achieved by using support vector machine training.This research will be beneficial to the extension of fish-eye lens in the field of machine vision.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2011年第5期417-424,共8页 Journal of Tianjin University(Science and Technology)
基金 国家高技术研究发展计划(863计划)资助项目(2007AA04Z229) 国家科技部中芬国际合作资助项目(2006DFA12410)
关键词 全方位视觉 鱼眼镜头 参数标定 畸变矫正 支持向量机 omni-directional vision fish-eye lens parameter calibration rectification support vector machine
  • 相关文献

参考文献10

  • 1Goedeme T , Nuttin M , Tuytelaars T , et al Omnidirectional vision based topological navigation [J].International Journal of Computer Vision ,2007,74 (3) 219-236. 被引量:1
  • 2Hrabar S,Sukhatme G S. Omnidirectional vision for an autonomous helicopter[C]// 2003 IEEE International Conference. Los Angeles,USA,2003:558-563. 被引量:1
  • 3Sun Y J,Cao Q X,Chen W D. An object tracking and global localization method using omnidirectional vision system [C] // Proceedings of Intelligent Control and Automation on 2004 Fifth Word Congress. Harbin, China, 2004:4730-4735. 被引量:1
  • 4Li S G. Full-view spherical image camera [C] // Proceed- ings of the 18th International Conference on Pattern Recognition. Hong Kong, China, 2006 : 386-390. 被引量:1
  • 5Ying X H ,Zha H B. Using sphere images for calibrating fisheye cameras under the unified imagingmodel of the central catadioptric and fisheye cameras [C]// Proceed- ings of the 18th International Conference on Pattern Recognition. Hong Kong,China,2006:539-542. 被引量:1
  • 6Brauer-Burchardt C,Voss K. A new algorithm to correct fish-eye and strong wide-angle-lens-distortion from Sin- gle Images[C]//Proceedings of the 2001 International Conference on Images Processing. Saloniki, Greece, 2001:225-228. 被引量:1
  • 7Hartley R,Kang Sing Bing. Parameter-free radial distor- tion correction with centre of distortion estimation[C]// Proceedings of the Tenth IEEE International Conference on Computer Vision. Beijing,China,2005 : 1834-1841. 被引量:1
  • 8邱志强,陆宏伟,于起峰.用射影不变性纠正鱼眼镜头畸变[J].应用光学,2003,24(5):36-38. 被引量:20
  • 9陈启军,张宏辉,王月娟,陈辉堂.一种简单的机器人鲁棒自适应轨迹跟踪控制算法[J].华中科技大学学报(自然科学版),2004,32(S1):52-54. 被引量:4
  • 10李雁斌,曹作良,刘常杰,叶声华.基于粒子滤波的全方位视觉传感器实现移动机器人导航[J].传感技术学报,2009,22(5):745-750. 被引量:5

二级参考文献19

  • 1李原,徐德,沈扬,谭民.焊缝跟踪视觉传感器中图像多类型特征选择与提取[J].传感技术学报,2006,19(6):2676-2681. 被引量:11
  • 2Crisan D, Doucet A. A Survey of Convergence Results on Particle Filtering Methods for Practitioners[J]. IEEE Transae tions on Signal Processing, 2002, 50(2) :736-746. 被引量:1
  • 3Doucet A, Godsil S, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering [J]. Statistics and Computing, 2000,10(3) : 197-208. 被引量:1
  • 4Belviken E, Acklam P J. Monte Carlo Filters for Non-Linear State Estimation[J]. Automation, 2001, 37(1) : 177-183. 被引量:1
  • 5Fox D. Adapting the Sample Size in Particle Filters Through KLD Sampling[J]. The International Journal of Robotics Research, 2003. 22(12) :985-1003. 被引量:1
  • 6Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots[J]. Artificial Intelligence, 2001, 128(1-2):99-141. 被引量:1
  • 7Gilks W R, Berzuini C. Following a Moving Target Monte Carlo Inference for Dynamic Bayesian Models[J]. Journal of the Royal Statistical Society, Series B, 2001, 61(1 ) : 127-146. 被引量:1
  • 8Linaker F, Ishikawa M. Real-Time Appearance-Based Monte Carlo Localization[J]. Robotics and Autonomous Systems, 2006, 54(3) :205-220. 被引量:1
  • 9Shishir shah, J K Aggarwal. Intrinsic parameter calibration procedure for a (high-distortion) fish-eye lens camera with distortion model and accuracy estimation [J]. pattern Recognition, 1996, 29 (11):1175~1178. 被引量:1
  • 10Slotine J J,Li W.On the adaptive control of manipulators[].The International Journal of Robotics Research.1987 被引量:1

共引文献26

同被引文献256

引证文献33

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部