期刊文献+

一种简单的机器人鲁棒自适应轨迹跟踪控制算法 被引量:4

A simple robust adaptive trajectory tracking control for robotic manipulators
下载PDF
导出
摘要 针对不确定性存在情况下的机器人轨迹跟踪 ,提出了一种鲁棒自适应轨迹控制算法 .控制算法是全局按指数收敛的 ,不需要知道机器人动力学模型 ,结构简单 ,计算量小 ,能使轨迹误差收敛到一任意小的区域内 .利用Lyapunov直接法分析了控制算法的稳定性和鲁棒性 .两关节直接驱动机器人的实验研究验证了算法的有效性 . This paper proposes a robust adaptive trajectory control scheme for robotic trajectory tracking under uncertainties. The control scheme is globally exponentially convergent without the knowledge of the robotic dynamics and simple in structure with a small computation. It can make the trajectory error to be convergent to an arbitrary small region. Lyapunov approach is used to analyze the stability and the robustness of this control scheme. Experiments on a two-link direct-drive robotic manipulator verify the...
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第S1期52-54,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 轨迹跟踪 鲁棒自适应控制 不依赖模型 trajectory tracking robust adaptive control independent of model
  • 相关文献

参考文献7

  • 1Slotine J J,Li W.On the adaptive control of manipulators[].The International Journal of Robotics Research.1987 被引量:1
  • 2Craig J,Hsu P,Sastry S.Adaptive control of robot manipulators[].The International Journal of Robotics Research.1987 被引量:1
  • 3Sadegh N,Horowitz R.An exponentially stable adaptive control law for robot manipulators[].IEEE Transactions on Robotics and Automation.1990 被引量:1
  • 4Imura J,Sugie T,Yoshikawa T.Adaptive robust control of robot manipulators-theory and experiment[].IEEE Transactions on Robotics and Automation.1994 被引量:1
  • 5Reed J,Ioannou P A.Instability analysis and robust adaptive control of robotics manipulators[].IEEE Transactions on Robotics.1989 被引量:1
  • 6Ortega R,Spong M W.Adaptive motion control of rigid robots: a Tutorial[].Automatica.1989 被引量:1
  • 7ColbaughR,GlassK.Adaptivetrackingcontrolofrigidmanipulatorsusingonlypositionmeasurements[].J ofRoboticsSystem.1997 被引量:1

同被引文献34

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部