摘要
针对深孔零件内径测量精度要求高、测量空间受限的问题,利用机械测量转换机构和电感位移传感器,研制了一种深孔内径在线精密测量装置。首先对测量转换机构进行力学分析,推导出影响该机构测量精度的主要因素,然后提出一种针对该装置系统的误差补偿方法,并搭建了在线测量平台,最后将测量装置安装在自动化生产线上,在工作状态下对某已标定深孔内径尺寸的工件进行多次重复测量实验,根据六西格玛理论对该测量系统进行统计学分析。分析结果表明:为了提高系统的测量精度和动态特性,转换机构设计时应该选择较大的刚性比和合理的簧片高度,以保证较小的寄生转角和较大的固有频率。实验结果表明:测量系统偏倚为0.02μm,测量极差为2μm,测量精度为3μm。该装置具有结构简单、测量精度高的优点,能够满足深孔内径在线测量要求。
Considering the requirement on the high-precision measurement of deep-hole diameter with limited measuring space, a precise on-line measurement device for deep-hole diameter was designed using the mechanical measurement transformation mechanism and the inductive displacement transducer. First, the mechanics analysis of the measurement transformation mechanism was performed and the main factors affecting the measuring accuracy were deduced. Then, a method of systemic error compensation for the device was proposed, and the on-line measurement platform was set up. Finally, the measurement device was installed on the automatic production line, and the measuring experiments were carried out repeatedly to measure the calibrated inner hole diameter of a workpiece. The statistical analysis of the measurement system was performed based on the theory of Six Sigma. The analysis results suggest that in order to improve the measuring accuracy and dynamic performance of the system, a larger rigid ratio and a reasonable reed height should be chosen to ensure a smaller parasitic rotation and a higher natural frequency when the transformation mechanism is designed. The experimental results suggest that the system bias is 0.02μm, the range is 2 μm and the measuring accuracy is 3μm. The device has the advantage of simple structure and high precision, which meets the requirements of on-line measurement of deep-hole diameter.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2015年第1期65-71,共7页
Journal of Xi'an Jiaotong University
基金
国家科技支撑计划资助项目(2013BAF05B00)
关键词
深孔
内径测量
转换机构
寄生转角
误差补偿
deep-hole
diameter measurement
transformation mechanism
parasitic rotation
error compensation