期刊文献+

一种融合文本语义和情感分析的好友推荐方法 被引量:3

Friend Recommendation Based on Analysis of Users' Emotions and Text Semantics
下载PDF
导出
摘要 在现实生活中用户的兴趣和情绪波动很大,而其他的微博特征(如注册信息等)一般变动较少,不能很好地表征用户。提出了一种融合用户文本语义和情感分析的好友推荐方法,根据用户的微博文本内容提取出语义特征,通过语义分析技术来计算特征词的相似度,同时引入了时间因素。在获得语义特征相似的用户之后,又进一步考虑用户的情感特征,根据微博文本中表述用户情感的词汇对用户的情感特点进行分析,进而对上一步产生的结果做优化筛选,得出最终的结果。通过实验表明,加入文本语义和情感分析的好友推荐模型更能够有效地提高推荐的准确度和接受率。 The interests and emotions of users are often varied in their real lives. On the contrary, some other features (such as the profiles) of micro-blog are always unchangeable and they cannot describe the users' characteristics very well. Then a novel friend recommendation method merged users' text semantics with emotions was proposed. In the model, in order to compute the similarity of friends, some text content features from users' micro-blog are extracted and time factor was introduced. Then further consideration on the users' emotional characteristics was taken to compute the users' similarity through analyzing the emotional words in micro-blog text. Then the final results were gotten. The results of the experiments show that the model can effectively enhance the accuracy and rationality of friend recommendation by adding text semantics and emotions analysis.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第11期2852-2859,共8页 Journal of System Simulation
基金 国家自然科学基金(61379114) 重庆市自然科学基金(CSTC2014jcyj A40047) 重庆市教委研究项目(KJ1400403) 重庆邮电大学博士启动项目(A2014-20)
关键词 微博 文本语义 情感分析 相似度 好友推荐 micro-blog text semantic emotional analysis similarity friend recommendation
  • 相关文献

参考文献2

二级参考文献24

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Shi L, Gu Z, Wei L, Shi Y. Popularity-based selective Markov model. In Proc. IEEE/WIC/ACM Int. Conf. Web Intelligence, Beijing, September 20-24, 2004, pp.504-507. 被引量:1
  • 3Griffioen J, Appleton R. Reducing file system latency using a predictive approach. In Proc. USENIX Summer Conf., Boston, MA, June 6-10, 1994, pp.197-207. 被引量:1
  • 4Cao P, Felten E W, Karlin A R, Li K. A study of integrated prefetching and caching strategies. In Proc. ACM SIGMETRICS Conf. Measurement and Modeling of Computer Systems, Ottawa, May 15-19, 1995, pp.171-182. 被引量:1
  • 5Yang Q et al. Integrating web prefetching and caching using prediction models. World Wide Web, 2001, 4(4): 299-321. 被引量:1
  • 6Zhuge H, Sun X, Liu J et al. A scalable P2P platform for the knowledge grid. IEEE Trans. Knowledge and Data Engineering, 2005, 17(12): 1721-1736. 被引量:1
  • 7Zhuge Het al. Query routing in a peer-to-peer semantic link network. Computational Intelligence, 2005, 21(2): 197-216. 被引量:1
  • 8Lin C. Stochastic Petri Nets and System Performance Analysis. Tsinghua University Press, 2001. 被引量:1
  • 9Shi L, Han Y, Ding X et al. SPN model for web prefetching and caching. In Proc. 1st Int. Conf. Semantics, Knowledge and Grid, Beijing, November 28-29, 2005, pp.259-270. 被引量:1
  • 10Yang Q, Huang J Z, Michael Ng. A data cube model for prediction-based web prefetching. J. Intelligent Information Systems, 2003, 20(1): 11-30. 被引量:1

共引文献552

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部